It has recently been suggested that movement variability directly increases the speed of motor learning. Here we use computational modeling of motor adaptation to show that variability can have a broad range of effects on learning, both negative and positive. Experimentally, we also find contributing and decelerating effects. Lastly, through a meta-analysis of published papers, we verify that across a wide range of experiments, movement variability has no statistical relation with learning rate. While motor learning is a complex process that can be modeled, further research is needed to understand the relative importance of the involved factors.
Many power wheelchair control interfaces are not sufficient for individuals with severely limited upper limb mobility. The majority of controllers that do not rely on coordinated arm and hand movements provide users a limited vocabulary of commands and often do not take advantage of the user’s residual motion. We developed a body-machine interface (BMI) that leverages the flexibility and customizability of redundant control by using high dimensional changes in shoulder kinematics to generate proportional controls commands for a power wheelchair. In this study, three individuals with cervical spinal cord injuries were able to control the power wheelchair safely and accurately using only small shoulder movements. With the BMI, participants were able to achieve their desired trajectories and, after five sessions driving, were able to achieve smoothness that was similar to the smoothness with their current joystick. All participants were twice as slow using the BMI however improved with practice. Importantly, users were able to generalize training controlling a computer to driving a power wheelchair, and employed similar strategies when controlling both devices. Overall, this work suggests that the BMI can be an effective wheelchair control interface for individuals with high-level spinal cord injuries who have limited arm and hand control.
Assistive robotic manipulators have the potential to improve the lives of people with motor impairments. They can enable individuals to perform activities such as pick-and-place tasks, opening doors, pushing buttons, and can even provide assistance in personal hygiene and feeding. However, robotic arms often have more degrees of freedom (DoF) than the dimensionality of their control interface, making them challenging to use—especially for those with impaired motor abilities. Our research focuses on enabling the control of high-DoF manipulators to motor-impaired individuals for performing daily tasks. We make use of an individual’s residual motion capabilities, captured through a Body-Machine Interface (BMI), to generate control signals for the robotic arm. These low-dimensional controls are then utilized in a shared-control framework that shares control between the human user and robot autonomy. We evaluated the system by conducting a user study in which 6 participants performed 144 trials of a manipulation task using the BMI interface and the proposed shared-control framework. The 100% success rate on task performance demonstrates the effectiveness of the proposed system for individuals with motor impairments to control assistive robotic manipulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.