Reactive oxygen species (ROS) have been proposed as one of the main causes of the impairment of fish spermatozoa integrity and functionality during cryopreservation. The high content of unsaturated fatty acids in sperm cells and the low antioxidant capacity of diluted semen are key factors in making sperm cells susceptible to ROS attacks. For this reason, some recent studies have determined the antioxidant status of the seminal plasma and spermatozoa of fish species. Additionally, some studies have evaluated the effects of antioxidants on post-thaw sperm quality. Although ROS are certainly involved in sperm damage, other factors, such as ice crystal formation, seem to play a crucial role in cryodamage. This challenge has not yet been resolved because both the endogenous antioxidant capacity of the semen and its response to different supplementation practices seem to present specific inter-and intraspecies characteristics and effects. This review summarises knowledge on antioxidant defence and oxidative stress in fish semen, as well as antioxidant supplementation in cryopreservation media, in order to establish perspectives for future studies.
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Summary There is a lack of information on the morphology of the first blastomeres that could be used as a diagnostic tool for the first stages of embryonic development for Coho salmon. The purpose of this investigation, therefore, was to characterize morphometrically the first blastomeres of Coho salmon (Oncorhynchus kisutch). In total, 660 embryonic discs from a pool of eggs that had been fertilized and incubated at 5°C and after 19 h of incubation were extracted and photographed. Of these, 20 microphotographs of blastodiscs of normal appearance were analyzed morphologically (control blastodiscs: CB) and 100 random microphotographs from the whole group were classified as either symmetrical or asymmetrical according to their morphology and then compared with the CB. The length and width of each blastomere and the proportions of length and width were measured to determine symmetry in the embryos at the 4-cell stage. Seven categories were created to characterize the blastomeres: 38% normal (G1); 26% unequal (G2); 10% 'pie-shaped' (G3); 10% amorphous (G4); 8% with three equal and one unequal blastomere (G5); 6% 'clover-shaped' blastomeres (G7), and 3% with inclusions. The mean of the proportions of lengths and widths of the groups of blastomeres that were measured was 0.87 ± 0.08 and 0.85 ± 0.07, respectively. The morphometric results that were obtained in this investigation are compared with the results observed by other authors for teleostei and are discussed.
The conditions of aquatic environments have a great influence on the microbiota of several animals, many of which are a potential source of microorganisms of biotechnological interest. In this study, bacterial strains isolated from aquatic environments were bioprospected to determine their probiotic profile and antimicrobial effect against fish and food pathogens. Two isolates, identified via 16S rRNA sequencing as Lactococcus lactis (L1 and L2) and one as Enterococcus faecium 135 (EF), produced a bacteriocin-like antimicrobial substance (BLIS), active against Listeria monocytogenes, Salmonella Choleraesuis and Salmonella Typhimurium. Antimicrobial activity of BLIS was reduced when exposed to high temperatures and proteolytic enzymes (trypsin, pepsin, papain and pancreatin). All strains were sensitive to 7 types of antibiotics (vancomycin, clindamycin, streptomycin, gentamicin, chloramphenicol, rifampicin and ampicillin), exhibited a high rate of adherence to Caco-2 cells and expressed no hemolysin and gelatinase virulence factors. EF showed some resistance at pH 2.5 and 3.0, and L2/EF showed higher resistance to the action of bile salts. Finally, the presence of bacteriocin genes encoding for proteins, including Nisin (L1 and L2), Enterocin A, B, P, and Mundticin KS (EF) was detected. The molecular and physiological evidence suggests that the bacterial isolates in this study could be used as natural antimicrobial agents and may be considered safe for probiotic application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.