We have identified, cultured, characterized, and propagated adult pluripotent stem cells (PSC) from a subset of human peripheral blood monocytes. These cells, which in appearance resemble fibroblasts, expand in the presence of macrophage colony-stimulating factor and display monocytic and hematopoietic stem cell markers including CD14, CD34, and CD45. We have induced these cells to differentiate into mature macrophages by lipopolysaccharide, T lymphocytes by IL-2, epithelial cells by epidermal growth factor, endothelial cells by vascular endothelial cell growth factor, neuronal cells by nerve growth factor, and liver cells by hepatocyte growth factor. The pluripotent nature of individual PSC was further confirmed by a clonal analysis. The ability to store, expand, and differentiate these PSC from autologous peripheral blood should make them valuable candidates for transplantation therapy. P luripotent stem cells (PSC) are a valuable resource for research, drug discovery, and transplantation (1, 2). These cells or their mature progeny can be used to study differentiation processes, identify and test lineage-specific drugs, or replace tissues damaged by a disease. However, the use of PSC from human fetuses, umbilical cords, or embryonic tissues derived from in vitro fertilized eggs raises ethical and legal questions, poses a risk of transmitting infections, and͞or may be ineffective because of immune rejection. A way to circumvent these problems is by exploiting autologous stem cells, preferably from an accessible tissue. In this context, it has been reported that bone marrow contains cells that appear to have the ability to transdifferentiate into mature cells belonging to distinct cell lineages (2). A recent study indicated that bone marrow mesenchymal PSC can be expanded in vitro and after transplantation differentiate in vivo into cells belonging to distinct lineages (3). Other studies have, however, raised the possibility that such mature cells may result from fusion of stem cells with mature resident tissue cells (4,5).In the present studies, we have described the characterization and expansion in vitro of a yet unidentified subset of human peripheral blood monocytes that behave as PSC. We have shown that these cells can be induced to acquire macrophage, lymphocyte, epithelial, endothelial, neuronal, and hepatocyte phenotypes in the absence of a fusion with preexisting mature tissue cells. The ability to obtain these PSC from an easily accessible source such as peripheral blood and to store them in liquid nitrogen should make them valuable candidates for autologous transplantation. Materials and MethodsCell Culture. Monocytes were obtained from buffy coats (each from 500 ml of peripheral blood) of healthy individuals (LifeSource Blood Services, Glenview, IL) by using a selective attachment procedure as described (6, 7). Fresh mononuclear cells for this procedure and͞or after storage in liquid nitrogen in FBS (Harlan Breeders, Indianapolis) containing 10% dimethyl sulfoxide (Sigma) were obtained after Ficoll-...
Abnormalities in cellular di erentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant ®broblast interferon (IFN-b) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell di erentiation. Subtraction hybridization identi®ed melanoma di erentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful e ects occur when mda-7 is expressed in normal epithelial or ®broblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Humda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-b plus MEZ. Mda-7 expression is also induced during megakaryocyte di erentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-b+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-b+MEZ and induction of endogenous mda-7 mRNA by combination treatment did not result in signi®cant intracellular MDA-7 protein. Radiation hybrid mapping assigned the mda-7 gene to human chromosome 1q, at 1q 32.2 to 1q41, an area containing a cluster of genes associated with the IL-10 family of cytokines. Mda-7 represents a di erentiation, growth and apoptosis associated gene with potential utility for the gene-based therapy of diverse human cancers. Oncogene (2001) 20, 7051 ± 7063.
IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the Km for NAD (1180 microM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 A with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione beta-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.
Human promyelocytic leukemia cells (HL-60) were induced to differentiate into mature cells by the tumorpromoting agent phorbol-12-myristate-13-acetate and other related phorbol diesters. Differentiation was determined by an increase in the percent of myelocytes, metamyelocytes, and other mature myeloid cells as well as by an increase in the percent of phagocytizing cells. Induction of differentiation could be determined after 2 days of treatment with phorbol-12-myristate-13-acetate at a dose as low as 6 X 10-11 M. A correlation was found between reported tumor-promoting activity of a series of phorbol esters and their ability to induce myeloid differentiation and to inhibit cell growth. It is suggested that tumor-promoting agents like chemicals that induce terminal differentiation in these cells, at extremely low concentrations, may be used as a tool in the study of the control of cell growth, cell differentiation, and malignancy in human leukemic cells.Etablished cell lines with appropriate markers for cell differentiation offer simple models for study of the control of cell growth and differentiation (1)(2)(3)(4)(5). These cell culture systems also allow the identification and study of the mode of action of chemicals that may control cell differentiation (4-11). Phorbol-12-myristate-13-acetate (PMA) and other related phorbol esters (12), which are tumor promoters in a two-stage mouseskin carcinogenesis system (13), were recently found to inhibit spontaneous and induced cell differentiation in avian myoblasts (14) and in murine erythroleukemia (15, 16), neuroblastomna (17), and adipose cells (18). These experiments suggest that tumor-promoting agents may mimic natural cellular agents that are involved in the regulation of cell growth and differentiation. Therefore, it was important to determine whether this class of chemicals can also affect cell growth and differentiation in human cells. The present studies were undertaken to examine the response of human HL-60 promyelocytic leukemia cells (5) to a series of different tumor-promoting agents. These human cells were used because they display distinct biological and morphological commitments towards myeloid differentiation and can be efficiently induced to differentiate to mature cells by dimethyl sulfoxide and related compounds (11). Our studies with the phorbol diesters indicated that these tumor-promoting agents can efficiently induce terminal differentiation in the HL-60 cells. Cell differentiation could be detected at concentrations as low as 6 X 10-"1 M. The fact that these chemicals act at doses comparable to the level of hormones in the cells suggests that they may mimic or compete with hormone-like chemicals that are involved in the control of cell growth and differentiation.
The mutagenicity of benzo[alpyrene and 15 of its derivatives, which included phenols, the benzo[a]pyrene4,5-epoxide (the K-region epoxide), dihydrodiols, two isomeric 7,8-diol-9,10-epoxides, a 6-methyl derivative, and a 6-hydroxymethyl derivative, were tested with Chinese hamster V79 cells in order to identify the (3,(8)(9)(10)(11)(12)(13)(14).Mutagenesis by these compounds was tested in Chinese hamster V79 cells, and mutation was characterized by resistance to ouabain (15)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.