Background:
Chemosensor compounds are useful for sensitive selective detection of cations and anions with
fluorophore groups in an attempt to develop the effective selectivity of the sensors. Although familiar fluorescent sensors
utilizing inter-molecular interactions with the cations and anions, an extraordinary endeavor was executed the preparation
of fluorescent-based sensor compounds. 4,4-difluoro-4- bora-3a,4a-diaza-s-indacene (Bodipy) and its derivatives were
firstly used as an agent in the imaging of biomolecules due to their interesting structures, complexation, and fluorogenic
properties. Among the fluorescent chemosensors used for cations and anions, Bodipy-based probes stand out owing to the
excellent properties such as sharp emission profile, high stability, etc. In this review, we emphasize the Bodipy-based
chemosensor compounds, which have been used to image cations and anions in living cells, because of as well as the
biocompatibility and spectroscopic properties.
Methods:
Research and online content related to chemosensor online activity is reviewed. The advances, sensing
mechanisms and design strategies of the fluorophore exploiting selective detection of some cation and anions with
Bodipy-based chemosensors are explained. It could be claimed that the using of Bodipy-based chemosensors is very
important for cations and anions in bio-imaging applications.
Results:
Molecular sensors or chemosensors are molecules that show a change can be detected when affected by the
analyte. They are capable of producing a measurable signal when they are selective for a particular molecule. Molecular
and ion recognition that it is important in biological systems such as enzymes, genes, environment, and chemical fields.
Due to the toxic properties of many heavy metal ions, it is of great importance to identify these metals due to their harmful
effects on living metabolism and the pollution they create in the environment. This process can be performed with
analytical methods based on atomic absorption and emission. The fluorescence methods among chemosensor systems have
many advantages such as sensitivity, selectivity, low price, simplicity of using the instrument and direct determination in
solutions. The fluorescence studies can be applied at nanomolar concentrations.
Conclusion:
During a few decades, a lot of Bodipy-based chemosensors for the detection of cations & anions have been
investigated in bio-imaging applications. For the Bodipy-based fluorescent chemosensors, the Bodipy derivatives were
prepared by different ligand groups for the illumination of the photophysical and photochemical properties. The
synthesized Bodipy-based chemosensors have remarkable photophysical properties, such as a high quantum yield, strong molar absorption coefficient etc. Moreover, these chemosensors were successfully implemented on living organisms for
the detection of analytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.