This paper proposes the digital circuit design that performs the eigenvalue calculation of asymmetric matrices with realvalued elements. Eigenvalues are computed iteratively through the QR algorithm. In the QR algorithm, the input matrix is factorized into orthogonal Q and upper triangular R matrix, then the RQ product is calculated to obtain an iterated matrix. For a time-efficient QR decomposition process, the Givens Rotation (GR) Principle is utilized to benefit from the parallelization feature. Parallelization is managed by the Systolic Array (SA) architecture that is created by placing Givens Generation (GG) and Row Updates (RU) blocks in a triangle array. In this paper, 4x4 input matrix is used to create a TSA architecture including n-1 diagonal (GG), and (n * (n-1)) / 2 off-diagonal (RU) modules. In the results section, Givens Rotation is compared with the Gram Schmidt algorithm used in our previous study [1] in terms of error, and area usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.