ABSTRACT:The land surface influences local, regional and global climate across many time scales. Accurate representation of land surfaces is an important factor for climate modelling studies because land surfaces control the partitioning of available energy and water. Here we introduce new, up-to-date and accurate land cover data for the Marmara Region, Turkey derived from Landsat Enhanced Thematic Mapper (ETM+) images into the Weather Research and Forecasting (WRF) model. We used several image processing techniques to create accurate land cover data from Landsat sensor images obtained between 2001 and 2005. By comparing the new land cover data with the default WRF land cover data, we found that there are two types of error in WRF land cover data that caused misrepresentation of the study region. WRF uses Global Land Cover Characteristics (GLCC) data created from images acquired during 1992 and 1993 and it does not reflect current land cover. And the GLCC includes misclassifications. As a result of these errors, GLCC data do not represent urban areas in the cities of Istanbul, Izmit and Bursa and there are spectral mixing problems between classes, e.g. croplands, urban areas and forests. We used WRF land cover and our new land cover data to conduct numerical simulations. Using meteorological station data within the study area, we found that simulation with the new land cover dataset produces more accurate temperature simulations for the region, thus demonstrating the importance of accurate land cover data.
Digital elevation models (DEMs), which can occur in the form of digital surface models (DSMs) or digital terrain models (DTMs), are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m, Shuttle Radar Topography Mission (SRTM) 30 m, and Advanced Land Observing Satellite (ALOS) 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR) 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey-produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI)-were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods' accuracies for the whole study area. In addition to the control point approach, vertical cross-sections were extracted from the DSMs to evaluate the accuracies related to land cover. The PHR and SPOT DSMs had the highest accuracies of all of the testing methods, followed by the ALOS DSM, which had very promising results. Comparatively, the SRTM and ASTER DSMs had the worst accuracies. Additionally, the PHR and SPOT DSMs captured man-made objects and above-terrain structures, which indicated the need for post-processing to attain better representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.