[1] Methanol is a biogeochemically active compound and a significant component of the volatile organic carbon in the atmosphere. It influences background tropospheric photochemistry and may serve as a tracer for biogenic emissions. The mass of methanol in the atmospheric reservoir, the annual mass flux of methanol from sources to sinks, and the estimated atmospheric lifetime of methanol in the free troposphere, marine boundary layer, continental boundary layer, and in-cloud, are evaluated. The atmosphere contains approximately 4 Tg (terragrams, 10 12 g) of methanol. Estimates of global methanol sources and sinks total 340 and 270 Tg methanol yr À1, respectively, and are in balance given their estimated precision. Sink terms were evaluated using observed methanol distributions; the total loss is approximately a factor of 5 larger than prior estimates. The adopted source is a factor of 3 larger than its prior estimate. Recent net flux observations and the magnitude of the estimated sink suggest biogenic methanol emissions to be near their current estimated upper limit, >280 Tg methanol yr À1 , and this value was adopted. The methanol source will be larger with the inclusion of an argued for oceanic gross emission of 30 Tg methanol yr À1, but a major uncertainty concerns whether the oceans are a major net sink or source of methanol, an issue which will not be resolved without new measurements. Other large uncertainties are the estimates of primary biogenic emissions and gas surface deposition. The first loss estimates of methanol by in-cloud chemistry and precipitation are presented. They are approximately equal at 10 Tg methanol yr À1 , each. These are small in comparison to the surface loss and gas phase photochemical loss estimated here but would be significant additional losses in earlier budgets. Surface exchange processes dominate the atmospheric budget of methanol and its distribution. The atmospheric deposition of methanol and the argued for methanol produced in the upper ocean are ubiquitous sources of C 1 substrate capable of sustaining methylotrophic organisms throughout the surface ocean.
P. bahamense, G. polyedra, and P. lunula exhibit interspecies differences in stimulable and spontaneous bioluminescence. For each species the total number of photons that can be emitted upon mechanical stimulation is a constant, regardless of the time during scotophase at which stimulation occurs. Ratios of stimulable bioluminescence per organism during scotophase and photophase are as high as 950:1 for laboratory cultures and have been observed as high as 4000: 1 for natural populations of P. bahamense. Spontaneous emission in darkness shows flashing as well as low-level continuous emission. Natural populations of P. bahamense, placed in darkness during natural photophase, exhibit a dual character to their stimulable bioluminescence. Mechanical stimulation techniques are described for rapid and reproducible stimulation of bioluminescence. I N T R O D U C T I O NIn previous papers dealing with the natural rhythms of bioluminescence of the tropical marine dinoflagellate Pyrodinium bahamense (Seliger et al., 1962;Taylor et al., 1966; Seliger and McElroy, 1968), both the shapes of the daily stimulable bioluminescence curves and the night-to-day ratios of stimulable bioluminescence differed markedly from the results reported by Hastings
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.