Celiac disease, also known as celiac sprue, is a gluten-induced autoimmune-like disorder of the small intestine, which is strongly associated with HLA-DQ2. The structure of DQ2 complexed with an immunogenic epitope from gluten, QLQPFPQPELPY, has been determined to 2.2-Å resolution by x-ray crystallography. The glutamate at P6, which is formed by tissue transglutaminase-catalyzed deamidation, is an important anchor residue as it participates in an extensive hydrogen-bonding network involving Lys-71 of DQ2. The gluten peptide-DQ2 complex retains critical hydrogen bonds between the MHC and the peptide backbone despite the presence of many proline residues in the peptide that are unable to participate in amide-mediated hydrogen bonds. Positioning of proline residues such that they do not interfere with backbone hydrogen bonding results in a reduction in the number of registers available for gluten peptides to bind to MHC class II molecules and presumably impairs the likelihood of establishing favorable side-chain interactions. The HLA association in celiac disease can be explained by a superior ability of DQ2 to bind the biased repertoire of proline-rich gluten peptides that have survived gastrointestinal digestion and that have been deamidated by tissue transglutaminase. Finally, surface-exposed proline residues in the proteolytically resistant ligand were replaced with functionalized analogs, thereby providing a starting point for the design of orally active agents for blocking gluten-induced toxicity.
Tetramers of MHC-peptide complexes are used for detection and characterization of antigen-specific T cell responses, but they require knowledge about both antigenic peptide and the MHC restriction element. The successful application of these reagents in human diseases involving CD4 ؉ T cells is limited. Celiac disease, an intestinal inflammation driven by mucosal CD4 ؉ T cells recognizing wheat gluten peptides in the context of disease-associated HLA-DQ molecules, is an ideal model to test the potential clinical use of these reagents. We investigated whether gluten-specific T cells can be detected in the peripheral blood of celiac disease patients using DQ2 tetramers. Nine DQ2 ؉ patients and six control individuals on a gluten-free diet were recruited to the study. Participants consumed 160 g of gluten-containing bread daily for 3 days. After bread-challenge, gluten-specific T cells were detectable in the peripheral blood of celiac patients but not controls both directly by tetramer staining and indirectly by enzyme-linked immunospot. These T cells expressed the 7 integrin indicative of gut-homing properties. Most of the cells had a memory phenotype, but many other phenotypic markers showed a heterogeneous pattern. Tetramer staining of gluten-specific T cells has the potential to be used for diagnosis of celiac disease. tetramers T he development of multimeric MHC-peptide complexes has revolutionized the analysis of antigen-specific T cell responses. Tetramers are such reagents consisting of four soluble recombinant MHC molecules, each loaded with a single peptide and bound to a streptavidin molecule that is coupled with a fluorogenic marker (1). Multivalent engagement of the MHCpeptide complexes leads to a stable binding of the tetramer to T cell receptors on the T cell surface, allowing direct visualization of T cells with a defined specificity.MHC class I tetramer technology has greatly facilitated our understanding of CD8 ϩ T cell responses in viral infections and cancer (2). The benefit of tetramers for characterization and diagnosis of human autoimmune and infectious diseases has, however, been modest (3-6). This particularly relates to MHC class II tetramers used for the characterization of antigen-specific CD4 ϩ T cells. Only a few studies of relevance to autoimmunity exist (7-9). MHC class II tetramers are more difficult to produce than MCH class I tetramers (10, 11), and CD4 ϩ T cells of a given specificity appear to be present at much lower frequencies than their CD8 ϩ counterparts (12, 13). Several criteria have to be met to be able to detect antigen-reactive T cells with MHC II tetramers: both the peptide epitope and HLA-restriction element have to be identified, and sufficient frequency and relative high avidity of reactive T cells are needed (14).Celiac disease, a chronic inf lammatory disorder of the small intestine precipitated by ingestion of cereal gluten proteins, presents as an ideal model to test the potential clinical use of MHC class II tetramers. The disorder is driven by intestinal glu...
Celiac disease is driven by intestinal T cells responsive to proline-rich gluten peptides that often harbor glutamate residues formed by tissue transglutaminase-mediated glutamine conversion. The disease is strongly associated with the HLA variant DQ2.5 (DQA1*05, DQB1*02), and intestinal gluten-reactive T cells from DQ2.5-positive patients are uniquely restricted by this HLA molecule. In this study, we describe the mapping of two novel T cell epitopes of γ-gliadin and the experimental identification of the DQ2.5 binding register of these and three other γ-gliadin epitopes. The new data extend the knowledge base for understanding the binding of gluten peptides to DQ2.5. The alignment of the experimentally determined binding registers of nine gluten epitopes reveal positioning of proline residues in positions P1, P3, P6, and P8 but never in positions P2, P4, P7, and P9. Glutamate residues formed by tissue transglutaminase-mediated deamidation are found in position P1, P4, P6, P7, or P9, but only deamidations in positions P4 and P6, and rarely in P7, seem to be crucial for T cell recognition. The majority of these nine epitopes are recognized by celiac lesion T cells when presented by the related but nonassociated DQ2.2 (DQA1*0201, DQB1*02) molecule. Interestingly, the DQ2.2 presentation for most epitopes is less efficient than presentation by the DQ2.5 molecule, and this is particularly prominent for the α-gliadin epitopes. Contrary to previous findings, our data do not show selective presentation of DQ2.5 over DQ2.2 for gluten epitopes that carry proline residues at the P3 position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.