Fungal endophytes of the genus Neotyphodium are common in temperate pasture grass species and confer both beneficial and deleterious agronomic characteristics to their hosts. The aim of this study was to develop molecular markers based on simple sequence repeat (SSR) loci for the identification and assessment of genetic diversity among Neotyphodium endophytes in grasses. Expressed sequence tags (ESTs) from both Neptyphodium coenophialum and Neotyphodium lolii were examined, and unique SSR loci were identified in 9.7% of the N. coenophialum sequences and 6.3% of the N. lolii sequences. A variety of SSRs were present, although perfect trinucleotide repeat arrays were the most common. Primers were designed to 50 SSR loci from N. coenophialum and 57 SSR loci from N. lolii and were evaluated using 20 Neotyphodium and Epichloë isolates. A high proportion of the N. coenophialum and N. lolii primers produced amplification products from the majority of isolates and most of these primers detected genetic variation. SSR markers from both N. coenophialum and N. lolii detected high levels of polymorphism between Neotyphodium and Epichloë species, and low levels of polymorphism within N. coenophialum and N. lolii. SSR markers may be used in appropriate combinations to discriminate between species. Comparison with amplified fragment length polymorphism (AFLP) data demonstrated that the SSR markers were informative for the assessment of genetic variation within and between endophyte species. These markers may be used to identify endophyte taxa and to evaluate intraspecific population diversity, which may be correlated with variation for endophyte-derived agronomic traits.
White clover (Trifolium repens L.) is an important temperate pasture legume that plays a key role as a companion to grass species, such as perennial ryegrass (Lolium perenne L.). Due to the outbreeding nature of white clover, cultivars are highly heterogeneous. Genetic diversity was assessed using 16 elite cultivars from Europe, North and South America, Australia, and New Zealand. Fifteen simple sequence repeat markers that detect single, codominant polymorphic genetic loci were selected for the study. The genetic relationships among individuals were compared using phenetic clustering, and those among cultivars were compared using nonmetric multidimensional scaling. Intrapopula tion variability exceeded interpopulation variability, with substantial overlap among populations and weak interpopula tion differentiation. No obvious or significant differentiation was observed on the basis of morphology or geographic origin of the cultivars. The number of parental genotypes used to derive each cultivar was not a major determinant of genome-wide genetic diversity. The outcomes of this assessment of genetic variation in elite white clover germplasm pools have important implications for the feasibility of molecular marker-based cultivar discrimination, and will be used to assist the design of linkage disequilibrium mapping strategies for marker-trait association.
The symbiotic association between perennial ryegrass (Lolium perenne L.) and the fungal endophyte Neotyphodium lolii is associated with host‐specific adaptations, particularly in response to abiotic and biotic stresses. Knowledge of the origin of the symbiosis and the contribution of endophyte genotype to host phenotypic variation is currently limited. Simple sequence repeat (SSR) markers were used to assess endophyte genetic diversity in a globally distributed collection of perennial ryegrass accessions. Consistent in planta detection was achieved with 18 of 22 SSR markers (primer pairs). Endophytes representing as many as four different taxa were detected in 42 accessions from 20 different countries, N. lolii being predominant. A total of 33 unique N. lolii genotypes were discriminated, of which 29 clustered into three major groups with limited within‐group variation. The three major N. lolii groups were associated with distinct perennial ryegrass chloroplast haplotypes. The alkaloid profiles of accessions were apparently associated with the presence of specific N. lolii genotypes. Genotypic analysis provides a powerful method for genetic dissection of the grass–endophyte interaction and prediction of phenotypic variation based on genotypic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.