A molecular marker-based map of perennial ryegrass (Lolium perenne L.) has been constructed through the use of polymorphisms associated with expressed sequence tags (ESTs). A pair-cross between genotypes from a North African ecotype and the cultivar Aurora was used to generate a two-way pseudo-testcross population. A selection of 157 cDNAs assigned to eight different functional categories associated with agronomically important biological processes was used to detect polymorphic EST-RFLP loci in the F(1)(NA(6) x AU(6)) population. A comprehensive set of EST-SSR markers was developed from the analysis of 14,767 unigenes, with 310 primer pairs showing efficient amplification and detecting 113 polymorphic loci. Two parental genetic maps were produced: the NA(6) genetic map contains 88 EST-RFLP and 71 EST-SSR loci with a total map length of 963 cM, while the AU(6) genetic map contains 67 EST-RFLP and 58 EST-SSR loci with a total map length of 757 cM. Bridging loci permitted the alignment of homologous chromosomes between the parental maps, and a sub-set of genomic DNA-derived SSRs was used to relate linkage groups to the perennial ryegrass reference map. Regions of segregation distortion were identified, in some instances in common with other perennial ryegrass maps. The EST-derived marker-based map provides the basis for in silico comparative genetic mapping, as well as the evaluation of co-location between QTLs and functionally associated genetic loci.
SUMMARY Artificial selection experiments provide insights into the evolutionary factors that can shape adaptive responses and have previously been utilized to examine the physiological adaptations that can improve survival to desiccation in Drosophila melanogaster. While such studies demonstrate that multiple resistance mechanisms may arise via different base populations and selection regimes, water retention emerges as a key mechanism for desiccation survival. Here, we present the physiological, correlated response and life history data for a new set of selection lines designed for the genetic dissection of desiccation resistance. After 26 generations of selection for desiccation resistance, female survival increased twofold. In contrast to previous studies, the altered resistance was associated primarily with enhanced dehydration tolerance and increased mass and less consistently with decreased rates of water loss. Life history tradeoffs and correlated selection responses were examined and overlap with previously published data. We crossed the resistant selected lines to desiccation-sensitive lines from the same control background to examine how each heterozygous resistant chromosome (excluding four) may improve desiccation resistance and observed that most of the resistance was due to genes on the third and first chromosomes, although interaction effects with the second chromosome were also detected. Results are compared to other selection responses and highlight the multiple evolutionary solutions that can arise when organisms are faced with a common selection pressure, although water loss rate remains a common mechanism in all studies.
BackgroundVariation of microorganism communities in the rumen of cattle (Bos taurus) is of great interest because of possible links to economically or environmentally important traits, such as feed conversion efficiency or methane emission levels. The resolution of studies investigating this variation may be improved by utilizing untargeted massively parallel sequencing (MPS), that is, sequencing without targeted amplification of genes. The objective of this study was to develop a method which used MPS to generate “rumen metagenome profiles”, and to investigate if these profiles were repeatable among samples taken from the same cow. Given faecal samples are much easier to obtain than rumen fluid samples; we also investigated whether rumen metagenome profiles were predictive of faecal metagenome profiles.ResultsRather than focusing on individual organisms within the rumen, our method used MPS data to generate quantitative rumen micro-biome profiles, regardless of taxonomic classifications. The method requires a previously assembled reference metagenome. A number of such reference metagenomes were considered, including two rumen derived metagenomes, a human faecal microflora metagenome and a reference metagenome made up of publically available prokaryote sequences. Sequence reads from each test sample were aligned to these references. The “rumen metagenome profile” was generated from the number of the reads that aligned to each contig in the database. We used this method to test the hypothesis that rumen fluid microbial community profiles vary more between cows than within multiple samples from the same cow. Rumen fluid samples were taken from three cows, at three locations within the rumen. DNA from the samples was sequenced on the Illumina GAIIx. When the reads were aligned to a rumen metagenome reference, the rumen metagenome profiles were repeatable (P < 0.00001) by cow regardless of location of sampling rumen fluid. The repeatability was estimated at 9%, albeit with a high standard error, reflecting the small number of animals in the study. Finally, we compared rumen microbial profiles to faecal microbial profiles. Our hypothesis, that there would be a stronger correlation between faeces and rumen fluid from the same cow than between faeces and rumen fluid from different cows, was not supported by our data (with much greater significance of rumen versus faeces effect than animal effect in mixed linear model).ConclusionsWe have presented a simple and high throughput method of metagenome profiling to assess the similarity of whole metagenomes, and illustrated its use on two novel datasets. This method utilises widely used freeware. The method should be useful in the exploration and comparison of metagenomes.
A modification of the ‘cold plaque’ screening technique (Hodge et al., Plant Journal1992, 2, 257–260) was used to screen a cDNA library constructed from drought‐stressed leaf tissue of the desiccation tolerant (‘resurrection’) grass Sporobolus stapfianus. This technique allowed a large number of clones representing genes expressed at low abundance to be isolated. An examination of expression profiles revealed that several of these genes are induced in desiccation‐tolerant tissue experiencing severe drought stress. Further characterization indicated that the gene products encoded include an eIF1 protein translation initiation factor and a glycine‐ and proline‐rich protein which have not previously been associated with drought stress. In addition, genes encoding a serine/threonine phosphatase type 2C, a tonoplast‐intrinsic protein (TIP) and an early light‐inducible protein (ELIP) were isolated. A number of these genes are expressed differentially in desiccation‐tolerant and desiccation‐sensitive tissues, suggesting that they may be associated with the desiccation tolerance response of S. stapfianus. The results indicate that there may be unique gene regulation processes occurring during induction of desiccation tolerance in resurrection plants which allow different drought‐responsive genes to be selectively expressed at successive levels of water loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.