Background: The development of drugs directed against tumor necrosis factor (TNF)-α has dramatically modified the therapeutic approach to inflammatory bowel diseases: a larger use of such drugs has also led to a major knowledge about their adverse effects, especially on skin. The aim of this report was to describe a rare steroid-dependent form of leukocytoclastic vasculitis induced by an anti-TNF-α agent in a young woman with ulcerative colitis. Case presentation: A young girl with ulcerative colitis developed a form of leukocytoclastic vasculitis induced by an anti-TNF-α agent. Recurrent palpable purpuric lesions on her legs were the main cutaneous manifestation. Skin lesions were steroid-dependent, but improved after withdrawal of the anti-TNF-α agent and second-line immunosuppressant therapy. Conclusions: The need to develop specific recommendations to guide the use of medications for managing skin reactions induced by anti-TNF-α drugs is herein emphasized.
Mortar specimens containing conductive additions (i.e., biochar and recycled carbon fibres – both alone and together, and graphene nanoplatelets) were characterized from a metrological point of view. Their piezoresistive capability was evaluated, exploiting the 4-electrode Wenner’s method to measure electrical impedance in alternating current (AC); in this way, both material and electrode-material polarization issues were avoided. The selected mix-design was used to manufacture scaled concrete beams serving as demonstrators. Additionally, FEM-based models were realized for a preliminary analysis of the modal parameters that will be investigated through impact tests conducted after different loading tests, simulating potential seismic effects. The results show that the combined use of recycled carbon fibers and biochar provide the best performance in terms of piezoresistivity (with a sensitivity of 0.109 (µm/m)-1 vs 0.003 (µm/m)-1 of reference mortar). Conductive additions improve the Signal-to-Noise Ratio (SNR) and increase the material electrical conductivity, providing suitable tools to develop a distributed sensor network for Structural Health Monitoring (SHM). Such a monitoring system could be exploited to enhance the resilience of strategic structures and infrastructures towards natural hazards. A homogeneous distribution of conductive additions during casting is fundamental to enhance the measurement repeatability. In fact, both concrete intrinsic properties and curing effect (hydration phenomena, increasing electrical impedance) cause a high variability.
The increase in concrete structures’ durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials. This work focuses on building heritage and it highlights the most recent findings for the conservation and restoration of reinforced concrete structures and masonry buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.