Highlights d Intersectional mapping of sensory neurons identifies distinct gut innervation patterns d Gut-innervating GLP1R+ vagal afferents relay anorexigenic signals to brainstem neurons d Gut-innervating GPR65+ vagal afferent stimulation increases hepatic glucose production d GLP1R+ vagal afferent activity is required to control glycemia during feeding
Chitosan (CS) has been widely used in a variety of biomedical applications, including peripheral nerve repair, due to its excellent biocompatibility, biodegradability, readily availability and antibacterial activity. In this study, CS flat membranes, crosslinked with dibasic sodium phosphate (DSP) alone (CS/DSP) or in association with the γ-glycidoxypropyltrimethoxysilane (CS/GPTMS_DSP), were fabricated with a solvent casting technique. The constituent ratio of crosslinking agents and CS were previously selected to obtain a composite material having both adequate mechanical properties and high biocompatibility.In vitro cytotoxicity tests showed that both CS membranes allowed cell survival and proliferation.Moreover, CS/GPTMS_DSP membranes promoted cell adhesion, induced Schwann cell-like morphology and supported neurite outgrowth from dorsal root ganglia explants.Preliminary in vivo tests carried out on both types of nerve scaffolds (CS/DSP and CS/GPTMS_DSP membranes) demonstrated their potential for: (i) protecting, as a membrane, the site of nerve crush or repair by end-to-end surgery and avoiding post-operative nerve adhesion; (ii) bridging, as a conduit, the two nerve stumps after a severe peripheral nerve lesion with substance loss.A 1cm gap on rat median nerve was repaired using CS/DSP and CS/GPTMS_DSP conduits to further investigate their ability to induce nerve regeneration in vivo. CS/GPTMS_DSP tubes resulted to be more fragile during suturing and, along a 12-week post-operative lapse of time, they detached from the distal nerve stump. On the contrary CS/DSP conduits promoted nerve fiber regeneration and functional recovery, leading to an outcome comparable to median nerve repaired by autograft. 4
Dorsal root ganglia (DRGs) host the somata of sensory neurons which convey information from the periphery to the central nervous system. These neurons have heterogeneous size and neurochemistry, and those of small-to-medium size, which play an important role in nociception, form two distinct subpopulations based on the presence (peptidergic) or absence (non-peptidergic) of transmitter neuropeptides. Few investigations have so far addressed the spatial relationship between neurochemically different subpopulations of DRG neurons and glia. We used a whole-mount mouse lumbar DRG preparation, confocal microscopy and computer-aided 3D analysis to unveil that IB4 + non-peptidergic neurons form small clusters of 4.7 ± 0.26 cells, differently from CGRP + peptidergic neurons that are, for the most, isolated (1.89 ± 0.11 cells). Both subpopulations of neurons are ensheathed by a thin layer of satellite glial cells (SGCs) that can be observed after immunolabeling with the specific marker glutamine synthetase (GS). Notably, at the ultrastructural level we observed that this glial layer was discontinuous, as there were patches of direct contact between the membranes of two adjacent IB4 + neurons. To test whether this cytoarchitectonic organization was modified in the diabetic neuropathy, one of the most devastating sensory pathologies, mice were made diabetic by streptozotocin (STZ). In diabetic animals, cluster organization of the IB4 + non-peptidergic neurons was maintained, but the neuro-glial relationship was altered, as STZ treatment caused a statistically significant increase of GS staining around CGRP + neurons but a reduction around IB4 + neurons. Ultrastructural analysis unveiled that SGC coverage was increased at the interface between IB4 + cluster-forming neurons in diabetic mice, with a 50% reduction in the points of direct contacts between cells. These observations demonstrate the existence of a structural plasticity of the DRG cytoarchitecture in response to STZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.