The microbiota is extremely important for the animal’s health, but, to date, knowledge on the intestinal microbiota of the rabbit is very limited. This study aimed to describe bacterial populations that inhabit the different gastrointestinal compartments of the rabbit: stomach, duodenum, jejunum, ileum, caecum, and colon. Samples of the luminal content from all compartments of 14 healthy New White Zealand rabbits were collected at slaughter and analyzed using next generation 16S rRNA Gene Sequencing. The findings uncovered considerable differences in the taxonomic levels among the regions of the digestive tract. Firmicutes were the most abundant phylum in all of the sections (45.9%), followed by Bacteroidetes in the large intestine (38.9%) and Euryarchaeota in the foregut (25.9%). Four clusters of bacterial populations were observed along the digestive system: (i) stomach, (ii) duodenum and jejunum, (iii) ileum, and (iv) large intestine. Caecum and colon showed the highest richness and diversity in bacterial species, while the highest variability was found in the upper digestive tract. Knowledge of the physiological microbiota of healthy rabbits could be important for preserving the health and welfare of the host as well as for finding strategies to manipulate the gut microbiota in order to also promote productive performance.
In the last two decades, the human sperm count linearly decreased in Western countries. Health problems, lifestyle, pollutants, and dietary behaviours are considered as the main risk factors, and the unbalance of dietary n‐6/n‐3 fatty acids is one of the most relevant. The aim of the present research is to study the effect of different dietary sources of n‐3 polyunsaturated fatty acids (PUFA) on reproductive traits using rabbit buck as the animal model. Fifteen rabbit bucks were assigned to three experimental groups: the control group, the FLAX group fed 10% extruded flaxseed, and the FISH group fed 3.5% fish oil for 110 days (50-day adaptation and 60-day experimental periods). Semen samples were collected weekly, whereas blood was collected every two weeks for the analytical determination of semen traits, oxidative status, fatty acid profiles, isoprostanes, neuroprostanes, and the immunocytochemistry of docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid. At the end of the trial, the rabbits were killed and the testes were removed and stored for the analysis of fatty acid profile and immunocytochemistry. Results showed that dietary administration of n‐3 PUFA improved the track speed of the sperm and increased the n‐3 long-chain PUFA mainly confined in the sperm tail. Seminal plasma increased the thiobarbituric reactive substances (TBARs) by three times in the groups fed supplemental n‐3, whereas the F2-isoprotanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were lower and higher, respectively, in both supplemented groups than in the control. The testes and sperm showed a higher DHA and EPA distribution in rabbits from the n‐3 supplemented groups compared with the control. In conclusion, supplemental dietary n‐3 PUFA improved sperm motion traits and resulted in an enrichment of membrane fatty acid in the sperm and testes of the rabbits. However, such an increased amount of PUFA negatively affected the sperm oxidative status, which was mainly correlated with the generation of F4-NeuroPs with respect to F2-IsoPs. Accordingly, the latter cannot be considered a good marker of oxidation when diets rich in n‐3 PUFA are provided.
The demand for poultry meat, being cheaper than red meat, will drive worldwide production of this product. Accordingly, an increase in production up to 16% is expected in 2025, most of which will occur in developing countries. Most poultry meat production is realized with intensive production systems, and extensive rearing systems (ERS) of poultry (organic, free-range, and low-input) represent only a small portion of poultry production in the EU (about 5%). However, there is an increasing interest in such rearing systems to maintain the good image of product and environmental sustainability, improved animal welfare, and meat quality with an annual trend of growth of about 10%. The aims of this work were to summarize the activities and the viewpoint of the researchers of the Department of Agricultural, Food, and Environmental Science of the University of Perugia (Italy). One of the most important goals of the research unit was the challenge of identifying the best poultry genotypes for ERS, which are important not only for the food industry but also for the improvement of human nutrition. Only the definition of the best genotypes adapted to ERS through the measurement of a wide panel of traits—genetic, physiologic, and behavior—and not only relying on daily weight gain will allow us to achieve this goal.
The present survey evaluates production, research funds and scientific activity relating to rabbits in Italy, Europe and all over the world during the last 20 years. Official statistics have several weaknesses for a small and diversified production like that of rabbits. Different methods for collecting and providing data in the different countries can be used and data for backyard production can miss. According to FAO, in 2017, China and the Democratic People's Republic of Korea contributed 73.3% to the global volume of rabbit meat. The two main EU producing countries, Spain and France, lost 12.2 and 6.4%, respectively, of their former share of world production compared to 1998. Whilst Italy is self-sufficient in rabbit meat production, trade exchanges are low, and meat consumption is decreasing. In regards to research funding, based on collected information which can be not fully comprehensive, China stands in the top position and Italy is placed fourth after France and Germany. Italy, France and Spain are among the top-five publishing countries and 'World Rabbit Science' is among the top publishing scientific journal in Agricultural and Biological Sciences (ABS). In the case of Veterinary Sciences, 'Veterinary Record' is one of the top journals. In Italy, ABS publications mainly focussed on Meat quality, Nutrition and feeding and Ethology and welfare. Pathology and hygiene and Breeding and genetics were the most published topics in Veterinary Science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.