SummaryLoss of cone photoreceptors, crucial for daylight vision, has the greatest impact on sight in retinal degeneration. Transplantation of stem cell-derived L/M-opsin cones, which form 90% of the human cone population, could provide a feasible therapy to restore vision. However, transcriptomic similarities between fetal and stem cell-derived cones remain to be defined, in addition to development of cone cell purification strategies. Here, we report an analysis of the human L/M-opsin cone photoreceptor transcriptome using an AAV2/9.pR2.1:GFP reporter. This led to the identification of a cone-enriched gene signature, which we used to demonstrate similar gene expression between fetal and stem cell-derived cones. We then defined a cluster of differentiation marker combination that, when used for cell sorting, significantly enriches for cone photoreceptors from the fetal retina and stem cell-derived retinal organoids, respectively. These data may facilitate more efficient isolation of human stem cell-derived cones for use in clinical transplantation studies.
Changes in enzyme activity and the expression levels of a(1,6)fucosyltransferase [a(1,6)FT] have been reported in certain types of malignant transformations. To develop a better understanding of the role of a(1,6)FT in human colorectal carcinoma (CRC), we analysed the enzyme activity in healthy and tumour tissues. a(1,6)FT activity was considerably higher in tumour tissue than in healthy tissue and was related to gender, lymph node metastasis, type of growth and tumour stage. We also observed a significant increase in the a(1,6)FT expression in tumour tissues as compared to healthy and transitional tissues, inflammatory lesions and adenomas. The immunohistochemical expression in tumour tissues was correlated with the degree of infiltration through the intestinal wall. Finally, a statistical correlation was found between enzyme activity and expression obtained by Western blot in colorectal tumours when compared in the same patient. All these findings demonstrate an alteration of a(1,6)FT activity and expression in CRC. ' 2008 Wiley-Liss, Inc.Key words: a(1,6)fucosyltransferase; FUT8; colorectal cancer It is well documented that N-linked oligosaccharides on glycoproteins are structurally altered during malignant transformation.
During embryo neurogenesis, neurons that originate from stem cells located in the forebrain subventricular zone (SVZ) continuously migrate to the olfactory bulb (OB). However, other authors describe the occurrence of resident stem cells in the OB. In the present work we report that the absence of tumor suppressor protein p53 increases the number of neurosphere-forming cells and the proliferation of stem cells derived from 13.5-day embryo OB. Interestingly, differentiation of p53 knockout-derived neurospheres was biased toward neuronal precursors, suggesting a role for p53 in the differentiation process. Moreover, we demonstrate the relevance of p53 in maintaining chromosomal stability in response to genotoxic insult. Finally, our data show that neurosphere stem cells are highly resistant to long-term epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) deprivation in a p53-independent fashion, and they preserve their differentiation potential. Thus, these data demonstrate that p53 controls the proliferation, chromosomal stability and differentiation pattern of embryonic mouse olfactory bulb stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.