SummaryLoss of cone photoreceptors, crucial for daylight vision, has the greatest impact on sight in retinal degeneration. Transplantation of stem cell-derived L/M-opsin cones, which form 90% of the human cone population, could provide a feasible therapy to restore vision. However, transcriptomic similarities between fetal and stem cell-derived cones remain to be defined, in addition to development of cone cell purification strategies. Here, we report an analysis of the human L/M-opsin cone photoreceptor transcriptome using an AAV2/9.pR2.1:GFP reporter. This led to the identification of a cone-enriched gene signature, which we used to demonstrate similar gene expression between fetal and stem cell-derived cones. We then defined a cluster of differentiation marker combination that, when used for cell sorting, significantly enriches for cone photoreceptors from the fetal retina and stem cell-derived retinal organoids, respectively. These data may facilitate more efficient isolation of human stem cell-derived cones for use in clinical transplantation studies.
Loss of photoreceptor cells due to retinal degeneration is one of the main causes of blindness in the developed world. Although there is currently no effective treatment, cell replacement therapy using stem‐cell‐derived photoreceptor cells may be a feasible future treatment option. In order to ensure safety and efficacy of this approach, robust cell isolation and purification protocols must be developed. To this end, we previously developed a biomarker panel for the isolation of mouse photoreceptor precursors from the developing mouse retina and mouse embryonic stem cell cultures. In the current study we applied this approach to the human pluripotent stem cell (hPSC) system, and identified novel biomarker combinations that can be leveraged for the isolation of human photoreceptors. Human retinal samples and hPSC‐derived retinal organoid cultures were screened against 242 human monoclonal antibodies using a high through‐put flow cytometry approach. We identified 46 biomarkers with significant expression levels in the human retina and hPSC differentiation cultures. Human retinal cell samples, either from fetal tissue or derived from embryonic and induced pluripotent stem cell cultures, were fluorescence‐activated cell sorted (FACS) using selected candidate biomarkers that showed expression in discrete cell populations. Enrichment for photoreceptors and exclusion of mitotically active cells was demonstrated by immunocytochemical analysis with photoreceptor‐specific antibodies and Ki‐67. We established a biomarker combination, which enables the robust purification of viable human photoreceptors from both human retinae and hPSC‐derived organoid cultures. Stem Cells
2018;36:709–722
Enhanced polycomb complex protein Bmi1 expression in adult stem cells of the skeletal muscle leads to improved muscle function in a model of Duchenne Muscular Dystrophy via metallothionein1-mediated protection from oxidative stress.
In vitro activation of matrix metalloproteinase-9 (MMP-9) (Gelatinase B) with MMP-3 shows the presence of two different forms: an 82 kDa, N-terminal truncated form, and a 65 kDa, N- and C-terminal truncated form. So far the presence of the 65 kDa form has not been reported in vivo. Affinity chromatography was performed to separate MMP-9 from MMP-2 and immunoprecipitation to isolate ∼65 kDa MMP-9 from 82 kDa MMP-9 in sera of healthy donors. The presence of ∼65 kDa active MMP-9 was demonstrated both with gelatin zymography and western blot analysis. The ∼65 kDa MMP-9 lacks the haemopexin domain required for the high-affinity binding of the tissue inhibitor TIMP-1, and can be evaluated by activity assay in the presence of TIMP-1. This opens the possibility to investigate the role of this form of MMP-9 that escapes physiological regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.