The challenge of finding alternative uses for retired wind-turbine blades, which have limited disposal options, motivates this work. Two reuse concept-generation activities (CGAs) conducted in German universities revealed difficulties with the parts' large scale and seeing beyond their original use. Existing methods, e.g., using functional analogy, are less applicable, since for safety reasons, these parts should not be reused to fulfill the same function. Therefore, this work explores the use of visual similarity to support reuse-concept generation. A method was developed that (1) finds visually similar images (VSIs) for wind-turbine-blade photos and (2) derives potential-reuse concepts based on objects that are visually similar to wind-turbine blades in these images. Comparing reuse concepts generated from the two methods, VSI produced fewer smaller-than-scale concepts than CGA. While other qualities such as feasibility depend on the specific photo selected, this work provides a new framework to exploit visual similarity to find alternative uses. As demonstrated for wind-turbine blades, this method aids in generating alternative-use concepts, especially for large-scale objects.
Divergent thinking, an aspect of creativity, is often studied by measuring performance on the Alternative Uses Test (AUT). There is, however, a gap in creativity research concerning how visual stimuli on the AUT are perceived. Memory and attention researchers have used eye-tracking studies to reveal insights into how people think and how they perceive visual stimuli. Thus, the current work uses eye tracking to study how eye movements are related to creativity. Participants orally listed alternative uses for twelve objects, each visually presented for 2 min in four different views. Using eye tracking, we specifically explored where and for how long participants fixate their eyes at visual presentations of objects during the AUT. Eye movements before and while naming alternative uses were analyzed. Results revealed that naming new instances and categories of alternative uses correlated more strongly with visual fixation toward multiple views than toward single views of objects. Alternative uses in new, previously unnamed categories were also more likely named following increased visual fixation toward blank space. These and other findings reveal the cognitive-thinking styles and eye-movement behaviors associated with naming new ideas. Such findings may be applied to enhance divergent thinking during design.
Inspirational stimuli are known to be effective in supporting ideation during early-stage design. However, prior work has predominantly constrained designers to using text-only queries when searching for stimuli, which is not consistent with real-world design behavior where fluidity across modalities (e.g., visual, semantic, etc.) is standard practice. In the current work, we introduce a multi-modal search platform that retrieves inspirational stimuli in the form of 3D-model parts using text, appearance, and function-based search inputs. Computational methods leveraging a deep-learning approach are presented for designing and supporting this platform, which relies on deep-neural networks trained on a large dataset of 3D-model parts. This work further presents the results of a cognitive study (n = 21) where the aforementioned search platform was used to find parts to inspire solutions to a design challenge. Participants engaged with three different search modalities: by keywords, 3D parts, and user-assembled 3D parts in their workspace. When searching by parts that are selected or in their workspace, participants had additional control over the similarity of appearance and function of results relative to the input. The results of this study demonstrate that the modality used impacts search behavior, such as in search frequency, how retrieved search results are engaged with, and how broadly the search space is covered. Specific results link interactions with the interface to search strategies participants may have used during the task. Findings suggest that when searching for inspirational stimuli, desired results can be achieved both by direct search inputs (e.g., by keyword) as well as by more randomly discovered examples, where a specific goal was not defined. Both search processes are found to be important to enable when designing search platforms for inspirational stimuli retrieval.
Designers can benefit from inspirational stimuli when presented during the design process. Encountering external stimuli can also lead designers to negative design outcomes by limiting exploration of the design space and idea generation. Prior work has investigated how specific features of inspirational stimuli can be beneficial or harmful to designers. However, the processes designers use to search for and discover inspirational stimuli leading to these outcomes are less known. The objective of this work is thus to better understand how designers search for inspirational design stimuli. Specifically, we investigate how factors such as designer expertise and search modality (e.g., text vs. visual-based) impact both explicit and implicit features during the search for design stimuli. A cognitive study was completed by novice and expert designers (seven students and eight professionals), who searched for design stimuli using a novel multi-modal search platform while following a think-aloud protocol. The multi-modal search platform enabled search using text and nontext inputs, and provided design stimuli in the form of 3D-model parts. This work presents methods to describe search processes in terms of three levels: activities, behaviors, and pathways, as defined in this paper. Our findings determine that design expertise and search modality influence search behavior. Illustrative examples are presented and discussed of search processes leading designers to both negative and beneficial outcomes, such as designers fixating on specific results or benefiting unexpectedly from unintentional inspirational stimuli. Overall, this work contributes to an improved understanding of how designers search for inspiration, and key factors influencing these behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.