Glioblastoma (GBM) is one of the most aggressive solid tumors, particularly due to the presence of cancer stem cells (CSCs). Nowadays, the characterization of this cell type with an efficient, fast and low-cost method remains an issue. Hence, we have developed a microfluidic lab-on-a-chip based on dielectrophoresis (DEP) single cell electro-manipulation to measure the two crossover frequencies: fx01 in the low-frequency range (below 500 kHz) and fx02 in the ultra-high-frequency range (UHF, above 50 MHz). First, in vitro conditions were investigated. An U87-MG cell line was cultured in different conditions in order to induce an undifferentiated phenotype. Then, ex vivo GBM cells from patients’ primary cell culture were passed through the developed microfluidic system and characterized in order to reflect clinical conditions. This article demonstrates that the usual exploitation of low-frequency range DEP does not allow the discrimination of the undifferentiated GBM cells from the differentiated one. However, the presented study highlights the use of UHF-DEP as a relevant discriminant parameter. The proposed microfluidic lab-on-a-chip is able to follow the kinetics of U87-MG phenotype transformation in a CSC enrichment medium and the cancer stem cells phenotype acquirement.
Cancer stem cells remain a challenge to isolate and characterize because of their plastic phenotype. Using a microfluidic lab-on-a-chip based on ultra-high frequency dielectophoresis, we measured the electromagnetic signature of colorectal cancer cells and demonstrated that cancer stem cells show a distinct and lower electromagnetic signature than differentiated cells. The release of extracellular vesicles from tumor cells can drive tumor progression and metastasis development. As extracellular vesicles from cancer stem cells carry more aggressive content, we treated colorectal cancer cells with these vesicles to test whether the lab-on-a-chip can detect a change in phenotype. The electromagnetic signature of treated cells is modified in comparison to untreated cells and sometimes even when no biological change is observed. The lab-on-a-chip provides rapid and relevant result without prior labeling compared to conventional biological approaches. It could be useful in the clinic for early detection of cancer stem cells in the tumor mass and for monitoring the aggressive potential of extracellular vesicles in the bloodstream in order to adapt therapeutic management and prevent relapse.
Glioblastoma (GBM) is one of the most aggressive solid tumors, particularly due to the presence of cancer stem cells (CSCs). Today the characterization of this type of cells with an efficient, fast and low-cost method remains an issue. Hence, we have developed a microfluidic lab-on-a-chip based on dielectrophoresis (DEP) single cell electro-manipulation to measure the two crossover frequencies: fx01 in low frequency range (below 500 kHz) and fx02 in Ultra High Frequency range (UHF, above 50 MHz). First, in vitro conditions were investigated. U87-MG cell lines were cultured in different conditions in order to induce an undifferentiated phenotype. Then, ex vivo GBM cells from patients’ primary cell culture, were passed through the developed microfluidic system and characterized in order to reflect clinical conditions. This article demonstrates that the usual exploitation of low frequency range DEP does not allow the discrimination of the undifferentiated from the differentiated phenotypes of GBM cells. However, the presented study highlights the use of UHF-DEP as a relevant discriminant parameter. The proposed microfluidic lab-on-a-chip is able to follow the kinetic of U87-MG phenotype transformation in a CSC enrichment medium and their cancer stem cells phenotype acquirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.