Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre‐clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late‐stage mdx mice exhibit aberrant HDAC activity and genome‐wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo‐acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late‐stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi‐induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper‐acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late‐stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease‐associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti‐fibrotic effects at late stages of DMD.
Myotonic dystrophy type 1 and 2 (DM1 and DM2) are two multisystemic autosomal dominant disorders with clinical and genetic similarities. The prevailing paradigm for DMs is that they are mediated by an in trans toxic RNA mechanism, triggered by untranslated CTG and CCTG repeat expansions in the DMPK and CNBP genes for DM1 and DM2, respectively. Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of both diseases. In this review, we discuss the available information on epigenetic mechanisms that could contribute to the DMs outcome and progression. Changes in DNA cytosine methylation, chromatin remodeling and expression of regulatory noncoding RNAs are described, with the intent of depicting an epigenetic signature of DMs. Epigenetic biomarkers have a strong potential for clinical application since they could be used as targets for therapeutic interventions avoiding changes in DNA sequences. Moreover, understanding their clinical significance may serve as a diagnostic indicator in genetic counselling in order to improve genotype–phenotype correlations in DM patients.
Here, we present a one-pot procedure for the preparation of hyaluronic acid (HA) sulfonated hydrogels in aqueous alkaline medium. The HA hydrogels were crosslinked using 1,4-butanedioldiglycidyl ether (BDDE) alone, or together with N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (Bes), as a safe sulfonating agent. Conditions for the simultaneous reaction of HA with BDDE and Bes were optimized and the resulting hydrogels were characterized under different reaction times (24, 72, and 96 h). The incorporation of sulfonic groups into the HA network was proven by elemental analysis and FTIR spectroscopy and its effect on water uptake was evaluated. Compared with the non-sulfonated sample, sulfonated gels showed improved mechanical properties, with their compressive modulus increased from 15 to 70 kPa, higher stability towards hyaluronidase, and better biocompatibility to 10T1/2 fibroblasts, especially after the absorption of collagen. As main advantages, the procedure described represents an easy and reproducible methodology for the fabrication of sulfonated hydrogels, which does not require toxic chemicals and/or solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.