Background Certain neuropsychiatric symptoms (NPS), namely apathy, depression, and anxiety demonstrated great value in predicting dementia progression, representing eventually an opportunity window for timely diagnosis and treatment. However, sensitive and objective markers of these symptoms are still missing. Therefore, the present study aims to investigate the association between automatically extracted speech features and NPS in patients with mild neurocognitive disorders. Methods Speech of 141 patients aged 65 or older with neurocognitive disorder was recorded while performing two short narrative speech tasks. NPS were assessed by the neuropsychiatric inventory. Paralinguistic markers relating to prosodic, formant, source, and temporal qualities of speech were automatically extracted, correlated with NPS. Machine learning experiments were carried out to validate the diagnostic power of extracted markers. Results Different speech variables are associated with specific NPS; apathy correlates with temporal aspects, and anxiety with voice quality—and this was mostly consistent between male and female after correction for cognitive impairment. Machine learning regressors are able to extract information from speech features and perform above baseline in predicting anxiety, apathy, and depression scores. Conclusions Different NPS seem to be characterized by distinct speech features, which are easily extractable automatically from short vocal tasks. These findings support the use of speech analysis for detecting subtypes of NPS in patients with cognitive impairment. This could have great implications for the design of future clinical trials as this cost-effective method could allow more continuous and even remote monitoring of symptoms.
Background: Modern prodromal Alzheimer’s disease (AD) clinical trials might extend outreach to a general population, causing high screen-out rates and thereby increasing study time and costs. Thus, screening tools that cost-effectively detect mild cognitive impairment (MCI) at scale are needed. Objective: Develop a screening algorithm that can differentiate between healthy and MCI participants in different clinically relevant populations. Methods: Two screening algorithms based on the remote ki:e speech biomarker for cognition (ki:e SB-C) were designed on a Dutch memory clinic cohort (N = 121) and a Swedish birth cohort (N = 404). MCI classification was each evaluated on the training cohort as well as across on the unrelated validation cohort. Results: The algorithms achieved a performance of AUC 0.73 and AUC 0.77 in the respective training cohorts and AUC 0.81 in the unseen validation cohort. Conclusion: The results indicate that a ki:e SB-C based algorithm robustly detects MCI across different cohorts and languages, which has the potential to make current trials more efficient and improve future primary health care.
<b><i>Introduction:</i></b> Progressive cognitive decline is the cardinal behavioral symptom in most dementia-causing diseases such as Alzheimer’s disease. While most well-established measures for cognition might not fit tomorrow’s decentralized remote clinical trials, digital cognitive assessments will gain importance. We present the evaluation of a novel digital speech biomarker for cognition (SB-C) following the Digital Medicine Society’s V3 framework: verification, analytical validation, and clinical validation. <b><i>Methods:</i></b> Evaluation was done in two independent clinical samples: the Dutch DeepSpA (<i>N</i> = 69 subjective cognitive impairment [SCI], <i>N</i> = 52 mild cognitive impairment [MCI], and <i>N</i> = 13 dementia) and the Scottish SPeAk datasets (<i>N</i> = 25, healthy controls). For validation, two anchor scores were used: the Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating (CDR) scale. <b><i>Results:</i></b> <i>Verification</i>: The SB-C could be reliably extracted for both languages using an automatic speech processing pipeline. <i>Analytical Validation</i>: In both languages, the SB-C was strongly correlated with MMSE scores. <i>Clinical Validation:</i> The SB-C significantly differed between clinical groups (including MCI and dementia), was strongly correlated with the CDR, and could track the clinically meaningful decline. <b><i>Conclusion:</i></b> Our results suggest that the ki:e SB-C is an objective, scalable, and reliable indicator of cognitive decline, fit for purpose as a remote assessment in clinical early dementia trials.
Background Automated speech analysis has gained increasing attention to help diagnosing depression. Most previous studies, however, focused on comparing speech in patients with major depressive disorder to that in healthy volunteers. An alternative may be to associate speech with depressive symptoms in a non-clinical sample as this may help to find early and sensitive markers in those at risk of depression. Methods We included n = 118 healthy young adults (mean age: 23.5 ± 3.7 years; 77% women) and asked them to talk about a positive and a negative event in their life. Then, we assessed the level of depressive symptoms with a self-report questionnaire, with scores ranging from 0–60. We transcribed speech data and extracted acoustic as well as linguistic features. Then, we tested whether individuals below or above the cut-off of clinically relevant depressive symptoms differed in speech features. Next, we predicted whether someone would be below or above that cut-off as well as the individual scores on the depression questionnaire. Since depression is associated with cognitive slowing or attentional deficits, we finally correlated depression scores with performance in the Trail Making Test. Results In our sample, n = 93 individuals scored below and n = 25 scored above cut-off for clinically relevant depressive symptoms. Most speech features did not differ significantly between both groups, but individuals above cut-off spoke more than those below that cut-off in the positive and the negative story. In addition, higher depression scores in that group were associated with slower completion time of the Trail Making Test. We were able to predict with 93% accuracy who would be below or above cut-off. In addition, we were able to predict the individual depression scores with low mean absolute error (3.90), with best performance achieved by a support vector machine. Conclusions Our results indicate that even in a sample without a clinical diagnosis of depression, changes in speech relate to higher depression scores. This should be investigated in more detail in the future. In a longitudinal study, it may be tested whether speech features found in our study represent early and sensitive markers for subsequent depression in individuals at risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.