Background: Modern prodromal Alzheimer’s disease (AD) clinical trials might extend outreach to a general population, causing high screen-out rates and thereby increasing study time and costs. Thus, screening tools that cost-effectively detect mild cognitive impairment (MCI) at scale are needed. Objective: Develop a screening algorithm that can differentiate between healthy and MCI participants in different clinically relevant populations. Methods: Two screening algorithms based on the remote ki:e speech biomarker for cognition (ki:e SB-C) were designed on a Dutch memory clinic cohort (N = 121) and a Swedish birth cohort (N = 404). MCI classification was each evaluated on the training cohort as well as across on the unrelated validation cohort. Results: The algorithms achieved a performance of AUC 0.73 and AUC 0.77 in the respective training cohorts and AUC 0.81 in the unseen validation cohort. Conclusion: The results indicate that a ki:e SB-C based algorithm robustly detects MCI across different cohorts and languages, which has the potential to make current trials more efficient and improve future primary health care.
<b><i>Introduction:</i></b> Progressive cognitive decline is the cardinal behavioral symptom in most dementia-causing diseases such as Alzheimer’s disease. While most well-established measures for cognition might not fit tomorrow’s decentralized remote clinical trials, digital cognitive assessments will gain importance. We present the evaluation of a novel digital speech biomarker for cognition (SB-C) following the Digital Medicine Society’s V3 framework: verification, analytical validation, and clinical validation. <b><i>Methods:</i></b> Evaluation was done in two independent clinical samples: the Dutch DeepSpA (<i>N</i> = 69 subjective cognitive impairment [SCI], <i>N</i> = 52 mild cognitive impairment [MCI], and <i>N</i> = 13 dementia) and the Scottish SPeAk datasets (<i>N</i> = 25, healthy controls). For validation, two anchor scores were used: the Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating (CDR) scale. <b><i>Results:</i></b> <i>Verification</i>: The SB-C could be reliably extracted for both languages using an automatic speech processing pipeline. <i>Analytical Validation</i>: In both languages, the SB-C was strongly correlated with MMSE scores. <i>Clinical Validation:</i> The SB-C significantly differed between clinical groups (including MCI and dementia), was strongly correlated with the CDR, and could track the clinically meaningful decline. <b><i>Conclusion:</i></b> Our results suggest that the ki:e SB-C is an objective, scalable, and reliable indicator of cognitive decline, fit for purpose as a remote assessment in clinical early dementia trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.