Bovine beta casein A1 is one of the most common variants in dairy cattle breeds; it is considered a risk factor in milk intolerance and in other important human diseases, because of the bioactive peptide beta casomorphin-7 (BCM7) produced by raw or processed A1-milk, but not by A2-milk, during digestion. The aim of this study was to perform a cheap and rapid method to investigate beta casein polymorphism in copious animals. The study included 2 dairy farms with a totally of 1230 cows. Beta casein genotypes were estimated evaluating Exon 7 region of bovine beta casein gene (CSN2) by sequences analysis. In the population included in the study 5 variants (A1, A2, B, F, I) and 13 genotypes (A1A1, A1A2, A1B, A1F, A1I, A2A2, A2B, A2F, A2I, BB, BF, BI, FI) were detected. The method showed high sensibility and specificity, resulted low-cost and few time consuming.
We recently described the genetic antimicrobial resistance and virulence profile of a collection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential ExPEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole (71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly associated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphonamides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identified among the collection, especially in poultry source. Both ST groups carried high number of ExPEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging ExPEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggesting commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance (mean = 1.69) determinants.
Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.
The present study provides insights into the similar distribution of putative virulence genes in a dairy chain and other sources' isolates and also into a geographical distribution of some P-types. We have shown that industrial dairy plants may represent an environmental site favouring a selection of the isolates with a higher pathogenetic pattern.
The honey bee has long been known to be a bioindicator of environmental pollution and the use of antimicrobials in the beekeeping industry is strictly regulated. For these reasons, this paper was aimed to evaluate for the first time the role of Apis mellifera as a possible indicator of environmental antimicrobial resistance (AMR). The study isolated and analysed the resistance patterns of Enterobacteriaceae from a pool of honey bee guts located in five different environmental sites (ES), where different antimicrobial selective pressures were hypothesized. In all, 48 isolates were considered for identification and underwent analyses of AMR to ampicillin, amoxicillin/clavulanic acid, cefazolin, ceftazidime, tetracycline, imipenem, enrofloxacin, amikacin and trimethoprim/sulfamethoxazole. In all, 12 isolates out of 48 (25%) showed resistance to at least one antimicrobial drug. There were no significant differences between the resistance rates observed in the ESs, even if the highest percentage of resistance was found in ES4. Resistances to amoxicillin/clavulanic acid resulted significantly higher than those detected towards the other antimicrobials. Amoxicillin/clavulanic acid is not commonly used in beekeeping but it is extensively used in animals and in humans, suggesting an environmental origin of this resistance and supporting the hypothesis that honey bees could be used as indicators of AMR spread in the environment. Significance and Impact of the Study In this study, a possible role of honey bees as indicator of environmental antimicrobial resistance is hypothesized. Enterobacteriaceae were isolated from bees living in different environmental sites (ES) where different antimicrobial selective pressures were hypothesized. Even if no differences between the resistances in the five ES were observed, the resistance rates for amoxicillin/clavulanic acid, compared to other antimicrobials, were significantly higher. Since amoxicillin/clavulanic acid is not used in beekeeping but it is extensively used in animals and in humans, an environmental origin of this resistance is suggested that supports our hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.