Porcine epidemic diarrhea virus (PEDV) has been detected sporadically in Italy since the 1990s. We report the phylogenetic relationship of swine enteric coronaviruses collected in Italy during 2007–2014 and identify a drastic shift in PEDV strain variability and a new swine enteric coronavirus generated by recombination of transmissible gastroenteritis virus and PEDV.
A wide range of arthropod-borne viruses threaten both human and animal health either through their presence in Europe or through risk of introduction. Prominent among these is West Nile virus (WNV), primarily an avian virus, which has caused multiple outbreaks associated with human and equine mortality. Endemic outbreaks of West Nile fever have been reported in Italy, Greece, France, Romania, Hungary, Russia and Spain, with further spread expected. Most outbreaks in Western Europe have been due to infection with WNV Lineage 1. In Eastern Europe WNV Lineage 2 has been responsible for human and bird mortality, particularly in Greece, which has experienced extensive outbreaks over three consecutive years. Italy has experienced co-circulation with both virus lineages. The ability to manage this threat in a cost-effective way is dependent on early detection. Targeted surveillance for pathogens within mosquito populations offers the ability to detect viruses prior to their emergence in livestock, equine species or human populations. In addition, it can establish a baseline of mosquito-borne virus activity and allow monitoring of change to this over time. Early detection offers the opportunity to raise disease awareness, initiate vector control and preventative vaccination, now available for horses, and encourage personal protection against mosquito bites. This would have major benefits through financial savings and reduction in equid morbidity/mortality. However, effective surveillance that predicts virus outbreaks is challenged by a range of factors including limited resources, variation in mosquito capture rates (too few or too many), difficulties in mosquito identification, often reliant on specialist entomologists, and the sensitive, rapid detection of viruses in mosquito pools. Surveillance for WNV and other arboviruses within mosquito populations varies between European countries in the extent and focus of the surveillance. This study reviews the current status of WNV in mosquito populations across Europe and how this is informing our understanding of virus epidemiology. Key findings such as detection of virus, presence of vector species and invasive mosquito species are summarized, and some of the difficulties encountered when applying a cost-effective surveillance programme are highlighted.
BackgroundIn recent years human diseases due to mosquito-borne viruses were increasingly reported in Emilia-Romagna region (Italy), from the chikungunya virus in 2007 to the West Nile virus (WNV) in 2008. An extensive entomological survey was performed in 2009 to establish the presence and distribution of mosquito arboviruses in this region, with particular reference to flaviviruses.Methodology/Principal FindingsFrom May 6 to October 31, a total of 190,516 mosquitoes were sampled in georeferenced stations, grouped in 1,789 pools according date of collection, location, and species, and analyzed by reverse transcription polymerase chain reaction (RT-PCR) to detect the presence of RNA belong to Flavivirus genus. WNV was detected in 27 mosquito pools, producing sequences similar to those of birds and human strains obtained in 2008 outbreak, pointed out the probable virus overwintering. Isolation of WNV was achieved from one of these pools. Moreover 56 pools of mosquitoes tested positive for Usutu virus (USUV). Most PCR positive pools consisted of Culex pipiens, which also was the most analyzed mosquito species (81.4% of specimens); interestingly, USUV RNA was also found in two Aedes albopictus mosquito pools. Simultaneous circulation of WNV and USUV in the survey area was highlighted by occurrence of 8 mosquito WNV- and USUV-positive pools and by the overlaying of the viruses “hot spots”, obtained by kernel density estimation (KDE) analysis. Land use of sampled stations pointed out a higher proportion of WNV-positive Cx. pipiens pool in rural environments respect the provenience of total sampled pool, while the USUV-positive pools were uniformly captured in the different environments.Conclusions/SignificanceObtained data highlighting the possible role of Cx. pipiens mosquito as the main vector for WNV and USUV in Northern Italy, and the possible involvement of Ae. albopictus mosquito in USUV cycle. The described mosquito-based surveillance could constitute the foundation for a public health alert system targeting mosquito borne arboviruses.
BackgroundPost-weaning diarrhoea (PWD), due to Escherichia coli, is an important cause of economic losses to the pig industry primarily as a result of mortality and worsened productive performance. In spite of its relevance, recent data about the prevalence of virulence genes and pathotypes among E. coli isolates recovered from cases of PWD in Europe are scarce.ResultsThis study investigates the prevalence of fimbrial and toxin genes of E. coli by PCR among 280 farms with PWD across Europe. A total of 873 samples collected within the first 48 h after the onset of PWD (occurring 7–21 days post weaning) were submitted to the laboratory for diagnostic purposes. Isolation and identification of E. coli were performed following standard bacteriological methods and PCR assays for the detection of genes encoding for fimbriae (F4, F5, F6, F18 and F41) and toxins (LT, STa, STb and Stx2e). The prevalence of fimbriae and toxins among E. coli isolates from cases of PWD was: F4 (45.1 %), F18 (33.9 %), F5 (0.6 %), F6 (0.6 %), F41 (0.3 %), STb (59.1 %), STa (38.1 %), LT (31.9 %) and Stx2e (9.7 %). E. coli isolates carrying both fimbrial and toxin genes were detected in 52.5 % of the cases (178 out of 339 isolates), with 94.9 % of them being classified as enterotoxigenic E. coli (ETEC). The most common virotype detected was F4, STb, LT.ConclusionsThis study confirms that ETEC is frequently isolated in pig farms with PWD across Europe, with F4- and F18-ETEC variants involved in 36.1 % and 18.2 % of the outbreaks, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.