The design of nanoporous perovskite oxides is considered an efficient strategy to develop performing, sustainable catalysts for the conversion of methane. The dependency of nanoporosity on the oxygen defect chemistry and the catalytic activity of perovskite oxides towards CH 4 and CO oxidation was here studied. A novel colloidal synthesis route for nanoporous, high-temperature stable SrTi 0.65 Fe 0.35 O 3-δ with specific surface area (SSA) ranging from 45 to 80 m 2 /g and pores from 10 to 100 nm was developed. High-temperature investigations by in situ synchrotron XRD and TG-MS combined with H 2 -TPR and Mössbauer spectroscopy showed that the porosity improved the release of surface oxygen and the oxygen diffusion, whereas the release of lattice oxygen depended more on the state of the iron species and strain effects in the materials. Regarding catalysis, light-off tests showed that low-temperature CO oxidation significantly benefitted from the enhancement of the SSA, whereas high-temperature CH 4 oxidation is influenced more from the dioxygen release. During isothermal long-term catalysis tests however the continuous oxygen release from large SSA materials promoted both CO and CH 4 conversion. Hence, if SSA maximization turned out to efficiently improve low-temperature and long-term catalysis applications, the role of both reducible metal center concentration and crystal structure cannot be completely ignored, as they also contribute to the perovskite oxygen release properties. TOC GraphicsScheme 1: Graphical representation of the synthesis of the SrTi 0.65 Fe 0.35 O 3-δ perovskites showing the dependency of the materials porosity and crystallite size from the type of polyol (ethylene glycol, glycerol, and 1,6 hexandiol) used
Thermochromic dynamic cool materials present a reversible change of their properties wherein by increasing the temperature, the reflectance, conductivity, and transmittance change due to a reversible crystalline phase transition. In particular, vanadium (IV) dioxide shows a reversible phase transition, accompanied by a change in optical properties, from monoclinic VO2(M1) to tetragonal VO2(R). In this paper, we report on a systematic exploration of the parameters for the synthesis of vanadium dioxide VO2(M1) via an easy, sustainable, reproducible, fast, scalable, and low-cost hydrothermal route without hazardous chemicals, followed by an annealing treatment. The metastable phase VO2(B), obtained via a hydrothermal route, was converted into the stable VO2(M1), which shows a metal–insulator transition (MIT) at 68 °C that is useful for different applications, from energy-efficient smart windows to dynamic concrete. Within this scenario, a further functionalization of the oxide nanostructures with tetraethyl orthosilicate (TEOS), characterized by an extreme alkaline environment, was carried out to ensure compatibility with the concrete matrix. Structural properties of the synthesized vanadium dioxides were investigated using temperature-dependent X-ray Diffraction analysis (XRD), while compositional and morphological properties were assessed using Scanning Electron Microscopy, Energy Dispersive X-ray Analysis (SEM-EDX), and Transmission Electron Microscopy (TEM). Differential Scanning Calorimetry (DSC) analysis was used to investigate the thermal behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.