Bacteria have evolved a wide range of mechanisms to harm and kill their competitors, including chemical, mechanical and biological weapons. Here we review the incredible diversity of bacterial weapon systems, which comprise antibiotics, toxic proteins, mechanical weapons that stab and pierce, viruses, and more. The evolution of bacterial weapons is shaped by many factors, including cell density and nutrient abundance, and how strains are arranged in space. Bacteria also employ a diverse range of combat behaviours, including pre-emptive attacks, suicidal attacks, and reciprocation (tit-for-tat). However, why bacteria carry so many weapons, and why they are so often used, remains poorly understood. By comparison with animals, we argue that the way that bacteria live -often in dense and genetically diverse communities -is likely to be key to their aggression as it encourages them to dig in and fight alongside their clonemates. The intensity of bacterial aggression is such that it can strongly affect communities, via complex coevolutionary and ecoevolutionary dynamics, which influence species over space and time. Bacterial warfare is a fascinating topic for ecology and evolution, as well as one of increasing relevance. Understanding how bacteria win wars is important for the goal of manipulating the human microbiome and other important microbial systems. StrategyRule(s) defining the decisions of an actor in response to prevailing conditions (for example, fight back if attacked). TacticsBehaviours displayed in a given contest (the realised output of a strategy). ToxinSubstance that disrupts cell physiology. WarfareConflict involving weapons between two or more groups. WeaponCompetitive phenotype that damages and/or disrupts the physiology of recipients, and that evolved, at least in part, for that purpose (for example, bacteriocin production).
The production of beneficial public goods is common in the microbial world, and so is cheating -the exploitation of public goods by nonproducing mutants. Here, we examine co-evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron-scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co-exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co-existence was fostered by a combination of general adaptions to the media and specific adaptions to the co-evolving opponent. Phenotypic screening and whole-genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine-signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co-existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.
Bacterial opportunistic pathogens are feared for their difficult-to-treat nosocomial infections and for causing morbidity in immunocompromised patients. Here, we study how such a versatile opportunist, Pseudomonas aeruginosa, adapts to conditions inside and outside its model host Caenorhabditis elegans, and use phenotypic and genotypic screens to identify the mechanistic basis of virulence evolution. We found that virulence significantly dropped in unstructured environments both in the presence and absence of the host, but remained unchanged in spatially structured environments. Reduction of virulence was either driven by a substantial decline in the production of siderophores (in treatments without hosts) or toxins and proteases (in treatments with hosts). Whole-genome sequencing of evolved clones revealed positive selection and parallel evolution across replicates, and showed an accumulation of mutations in regulator genes controlling virulence factor expression. Our study identifies the spatial structure of the non-host environment as a key driver of virulence evolution in an opportunistic pathogen.
Summary Behaviors that cause the death of an actor are typically strongly disfavored by natural selection, and yet many bacteria undergo cell lysis to release anti-competitor toxins [ 1 , 2 , 3 , 4 , 5 ]. This behavior is most easily explained if only a small proportion of cells die to release toxins and help their clonemates, but the frequency of cells that actually lyse during bacterial warfare is unknown. The challenge is finding a way to distinguish cells that have undergone programmed suicide from those that were simply killed by a competitor’s toxin. We developed a two-color fluorescence reporter assay in Escherichia coli to overcome this problem. This revealed conditions where nearly all cells undergo programmed lysis. Specifically, adding a DNA-damaging toxin (DNase colicin) from another strain induced mass cell suicide where ∼85% of cells lysed to release their own toxins. Time-lapse 3D confocal microscopy showed that self-lysis occurs locally at even higher frequencies (∼94%) at the interface between toxin-producing colonies. By exposing E. coli that do not perform lysis to the DNase colicin, we found that mass lysis occurs when cells are going to die anyway from toxin exposure. From an evolutionary perspective, this renders the behavior cost-free as these cells have zero reproductive potential. This helps to explain how mass cell suicide can evolve, as any small benefit to surviving clonemates can lead to this retaliatory strategy being favored by natural selection. Our findings have parallels to the suicidal attacks of social insects [ 6 , 7 , 8 , 9 ], which are also performed by individuals with low reproductive potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.