High-resolution genetic markers have revolutionized our understanding of vertebrate mating systems, but have so far yielded few comparable surprises about kinship in social insects. Here we use microsatellite markers to reveal an unexpected and unique social system in what is probably the best-studied social wasp, Polistes dominulus. Social insect colonies are nearly always composed of close relatives; therefore, non-reproductive helping behaviour can be favoured by kin selection, because the helpers aid reproductives who share their genes. In P. dominulus, however, 35% of foundress nestmates are unrelated and gain no such advantage. The P. dominulus system is unlike all other cases of unrelated social insects, because one individual has nearly complete reproductive dominance over subordinates who could have chosen other reproductive options. The only significant advantage that subordinates obtain is a chance at later reproduction, particularly if the queen dies. Thus, P. dominulus societies are functionally unlike other social insects, but similar to certain vertebrate societies, in which the unrelated helpers gain through inheritance of a territory or a mate.
No abstract
Cooperation is central to many major transitions in evolution, including the emergence of eukaryotic cells, multicellularity and eusociality. Cooperation can be destroyed by the spread of cheater mutants that do not cooperate but gain the benefits of cooperation from others. However, cooperation can be preserved if cheaters are facultative, cheating others but cooperating among themselves. Several cheater mutants have been studied before, but no study has attempted a genome-scale investigation of the genetic opportunities for cheating. Here we describe such a screen in a social amoeba and show that cheating is multifaceted by revealing cheater mutations in well over 100 genes of diverse types. Many of these mutants cheat facultatively, producing more than their fair share of spores in chimaeras, but cooperating normally when clonal. These findings indicate that phenotypically stable cooperative systems may nevertheless harbour genetic conflicts. The opportunities for evolutionary moves and countermoves in such conflicts may select for the involvement of multiple pathways and numerous genes.
The social amoeba, Dictyostelium discoideum, produces a multicellular fruiting body and has become a model system for cell-cell interactions such as signalling, adhesion and development. However, unlike most multicellular organisms, it forms by aggregation of cells and, in the laboratory, forms genetic chimeras where there may be competition among clones. Here we show that chimera formation is also likely in nature, because different clones commonly co-occur on a very small scale. This suggests that D. discoideum will likely have evolved strategies for competing in chimeras, and that the function of some developmental genes will be competitive. Natural chimerism also makes D. discoideum a good model organism for the investigation of issues relating to coexistence and conflict between cells.
The production of beneficial public goods is common in the microbial world, and so is cheating -the exploitation of public goods by nonproducing mutants. Here, we examine co-evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron-scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co-exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co-existence was fostered by a combination of general adaptions to the media and specific adaptions to the co-evolving opponent. Phenotypic screening and whole-genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine-signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co-existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.