SUMMARYFew regulators of phenylpropanoids have been identified in monocots having potential as biofuel crops. Here we demonstrate the role of the maize (Zea mays) R2R3-MYB factor ZmMYB31 in the control of the phenylpropanoid pathway. We determined its in vitro consensus DNA-binding sequence as ACC T / A ACC, and chromatin immunoprecipitation (ChIP) established that it interacts with two lignin gene promoters in vivo. To explore the potential of ZmMYB31 as a regulator of phenylpropanoids in other plants, its role in the regulation of the phenylpropanoid pathway was further investigated in Arabidopsis thaliana. ZmMYB31 downregulates several genes involved in the synthesis of monolignols and transgenic plants are dwarf and show a significantly reduced lignin content with unaltered polymer composition. We demonstrate that these changes increase cell wall degradability of the transgenic plants. In addition, ZmMYB31 represses the synthesis of sinapoylmalate, resulting in plants that are more sensitive to UV irradiation, and induces several stress-related proteins. Our results suggest that, as an indirect effect of repression of lignin biosynthesis, transgenic plants redirect carbon flux towards the biosynthesis of anthocyanins. Thus, ZmMYB31 can be considered a good candidate for the manipulation of lignin biosynthesis in biotechnological applications.
This commentary addresses data quality in equilibrium solubility measurement in aqueous solution. Broadly discussed is the "gold standard" shake-flask (SF)
Proanthocyanidins (PAs) or condensed tannins, a major group of dietary polyphenols, are oligomers and polymers of flavan-3-ol and flavan-3, 4-diols widely distributed in plant foods. Most literature data on PAs' metabolic fate deal with PAs that can be extracted from the food matrix by aqueous-organic solvents ( extractable proanthocyanidins). However, there are no data on colonic fermentation of non-extractable proanthocyanidins (NEPAs), which arrive almost intact to the colon, mostly associated to dietary fibre (DF). The aim of the present work was to examine colonic fermentation of NEPAs associated with DF, using a model of in vitro small intestine digestion and colonic fermentation. Two NEPA-rich materials obtained from carob pod (Ceratonia siliqua L. proanthocyanidin) and red grapes (grape antioxidant dietary fibre) were used as test samples. The colonic fermentation of these two products released hydroxyphenylacetic acid, hydroxyphenylvaleric acid and two isomers of hydroxyphenylpropionic acid, detected by HPLC-ESI-MS/MS. Differences between the two products indicate that DF may enhance the yield of metabolites. In addition, the main NEPA metabolite in human plasma was 3,4-dihydroxyphenyl acetic acid. The presence in human plasma of the same metabolites as were detected after in vitro colonic fermentation of NEPAs suggests that dietary NEPAs would undergo colonic fermentation releasing absorbable metabolites with potential healthy effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.