Patients with viral infections of the central nervous system (CNS) may present with a variety of neurological symptoms, most commonly dominated by either encephalitis or meningitis. The aetiological panorama varies in different parts of the world as well as over time. Thus, virological first-line diagnostics must be adapted to the current epidemiological situation and to the individual patient history, including recent travels. This review focuses on the diagnostics and treatment of viral CNS infections in the immunocompetent host from a Northern European perspective. Effective vaccines are available for viruses such as poliovirus and tick-borne encephalitis virus (TBEV) and for the childhood diseases morbilli (measles), rubella (German measles), parotitis (mumps) and varicella (chickenpox). However, cases do appear due to suboptimal immunization rates. In viral CNS infections, epidemiological surveillance is essential for establishing preventive strategies and for detecting emerging viruses. Knowledge of the possibilities and limitations of diagnostic methods for specific viral CNS infections is vital. A positive cerebral spinal fluid (CSF) polymerase chain reaction (PCR) finding is usually reliable for aetiological diagnosis. The demonstration of intrathecal antibody synthesis is useful for confirming the aetiology in a later stage of disease, hitherto sufficiently evaluated in herpes simplex encephalitis (HSE) and tick-borne encephalitis (TBE). Despite improved virological and differential diagnostic methods, aetiology remains unknown in about half of the cases with suspected viral encephalitis. Antiviral treatment is available chiefly for infections caused by herpesviruses, and acyclovir (aciclovir) is the drug of choice for empirical therapy in suspected viral encephalitis. However, randomized, controlled antiviral trials have only been conducted for HSE, while such studies are lacking in other viral CNS infections. Viral cytolysis and immune-mediated mechanisms may contribute to varying extents to neurological damage. Although the brain damage is believed to depend, to a varying degree, on the intrathecal host immune response, the use of corticosteroids in viral CNS infections is scarcely studied, as is specific treatment for neuroinflammation. Improved antiviral and immunomodulating treatment is desirable. Since neurological sequelae are still abundant, follow-up after severe viral CNS disease must include a neuropsychological assessment and an individually adapted rehabilitation plan.
BackgroundOne-fourth of children with cerebral malaria (CM) retain cognitive sequelae up to 2 years after acute disease. The kynurenine pathway of the brain, forming neuroactive metabolites, e.g. the NMDA-receptor antagonist kynurenic acid (KYNA), has been implicated in long-term cognitive dysfunction in other CNS infections. In the present study, the association between the kynurenine pathway and neurologic/cognitive complications in children with CM was investigated.MethodsCerebrospinal fluid (CSF) concentrations of KYNA and its precursor kynurenine in 69 Ugandan children admitted for CM to Mulago Hospital, Kampala, Uganda, between 2008 and 2013 were assessed. CSF kynurenine and KYNA were compared to CSF cytokine levels, acute and long-term neurologic complications, and long-term cognitive impairments. CSF kynurenine and KYNA from eight Swedish children without neurological or infectious disease admitted to Astrid Lindgren’s Children’s Hospital were quantified and used for comparison.ResultsChildren with CM had significantly higher CSF concentration of kynurenine and KYNA than Swedish children (P < 0.0001 for both), and CSF kynurenine and KYNA were positively correlated. In children with CM, CSF kynurenine and KYNA concentrations were associated with coma duration in children of all ages (P = 0.003 and 0.04, respectively), and CSF kynurenine concentrations were associated with worse overall cognition (P = 0.056) and attention (P = 0.003) at 12-month follow-up in children ≥5 years old.ConclusionsCSF KYNA and kynurenine are elevated in children with CM, indicating an inhibition of glutamatergic and cholinergic signaling. This inhibition may lead acutely to prolonged coma and long-term to impairment of attention and cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.