SummaryFor accurate interpretation of oxygen isotopes in tree rings (d 18 O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water d 18 O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the L€ otschental (Switzerland
Summary1. Forest microclimate is crucial for the growth and survival of tree seedlings and understorey vegetation. This high ecological relevance contrasts with the poor functional and quantitative understanding of how the properties of forest ecosystems influence forest microclimate. 2. In a long-term (1998-2011) trial, we investigated how temporal patterns of microclimate below sparse and dense forest canopy related to those of nearby open areas and how this relationship was influenced by soil moisture and seasonality. Air temperature (T), vapour pressure deficit (VPD), soil matrix potential and leaf area index (LAI) were measured in a unique set-up of below-canopy and open-area meteorological stations at eleven distinct forest ecosystems, characteristic of subalpine and temperate climate zones. Data from these plots were analysed for the moderating capacity of the canopy, that is, the differences between below-canopy and open-area microclimate, with respect to (i) long-term means, (ii) dynamics within homogeneous moist-vs. dry-soil periods and (iii) diurnal patterns. 3. The long-term mean moderating capacity of the canopy was up to 3.3°C for daily T max and 0.52 kPa for daily VPD max , of which soil moisture status alone accounted for up to 1.2°C (T max ) and 0.21 kPa (VPD max ). Below dense canopy (LAI > 4), the moderating capacity was generally higher when soils were dry and increased during dry-soil periods, particularly in spring and somewhat less in summer. The opposite pattern was found below sparse canopy (LAI < 4). At the diurnal level, moderating capacity below dense canopy was strongest in mid-afternoon and during dry-soil conditions, whereas peak moderation below sparse canopy occurred in mid-morning and during moist-soil conditions. 4. Synthesis. Our results suggest a threshold canopy density, which is probably linked to sitespecific water availability, below which the moderating capacity of forest ecosystems switches from supportive to unsupportive for seedling establishment. Under supportive moderating capacity, we understand a stronger mitigation during physiologically most demanding conditions for plant growth. Such a threshold canopy density sheds new light on forest resilience to climate change. Climate change may alter forest canopy density in a way that precludes successful establishment of tree species and ultimately changes forest ecosystem structure and functioning.
Drought has been frequently discussed as a trigger for forest decline. Today, large-scale Scots pine decline is observed in many dry inner-Alpine valleys, with drought discussed as the main causative factor. This study aimed to analyse the impact of drought on wood formation and wood structure. To study tree growth under contrasting water supply, an irrigation experiment was installed in a mature Scots pine (Pinus sylvestris L.) forest at a xeric site in a dry inner-Alpine valley. Inter- and intra-annual radial increments as well as intra-annual variations in wood structure of pine trees were studied. It was found that non-irrigated trees had a noticeably shorter period of wood formation and showed a significantly lower increment. The water conduction cells were significantly enlarged and had significantly thinner cell walls compared with irrigated trees. It is concluded that pine trees under drought stress build a more effective water-conducting system (larger tracheids) at the cost of a probably higher vulnerability to cavitation (larger tracheids with thinner cell walls) but without losing their capability to recover. The significant shortening of the growth period in control trees indicated that the period where wood formation actually takes place can be much shorter under drought than the 'potential' period, meaning the phenological growth period.
In Valais, Switzerland, Scots pines (Pinus sylvestris L.) are declining, mainly following drought. To assess the impact of drought on tree growth and survival, an irrigation experiment was initiated in 2003 in a mature pine forest, approximately doubling the annual precipitation. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Seven irrigated and six control trees were felled in 2006, and needles, stem discs and branches were taken for growth analysis. Irrigation in 2004 and 2005, both with below-average precipitation, increased needle size, area and mass, stem growth and, with a 1-year delay, shoot length. This led to a relative decrease in tree crown transparency (-14%) and to an increase in stand LAI (+20%). Irrigation increased needle length by 70%, shoot length by 100% and ring width by 120%, regardless of crown transparency. Crown transparency correlated positively with mean needle size, shoot length and ring width and negatively with specific leaf area. Trees with high crown transparency (low growth, short needles) experienced similar increases in needle mass and growth with irrigation than trees with low transparency (high growth, long needles), indicating that seemingly declining trees were able to 'recover' when water supply became sufficient. A simple drought index before and during the irrigation explained most of the variation found in the parameters for both irrigated and control trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.