Purpose
Glioblastomas (GB) and solitary brain metastases (BM) are the most common brain tumors in adults. GB and BM may appear similar in conventional magnetic resonance imaging (cMRI). Their management strategies, however, are quite different with significant consequences on clinical outcome. The aim of this study was to evaluate the usefulness of a previously presented physiological MRI approach scoping to obtain quantitative information about microvascular architecture and perfusion, neovascularization activity, and oxygen metabolism to differentiate GB from BM.
Procedures
Thirty-three consecutive patients with newly diagnosed, untreated, and histopathologically confirmed GB or BM were preoperatively examined with our physiological MRI approach as part of the cMRI protocol.
Results
Physiological MRI biomarker maps revealed several significant differences in the pathophysiology of GB and BM: Central necrosis was more hypoxic in GB than in BM (30 %; P = 0.036), which was associated with higher neovascularization activity (65 %; P = 0.043) and metabolic rate of oxygen (48 %; P = 0.004) in the adjacent contrast-enhancing viable tumor parts of GB. In peritumoral edema, GB infiltration caused neovascularization activity (93 %; P = 0.018) and higher microvascular perfusion (30 %; P = 0.022) associated with higher tissue oxygen tension (33 %; P = 0.020) and lower oxygen extraction from vasculature (32 %; P = 0.040).
Conclusion
Our physiological MRI approach, which requires only 7 min of extra data acquisition time, might be helpful to noninvasively distinguish GB and BM based on pathophysiological differences. However, further studies including more patients are required.
ObjectiveA prospective preoperative evaluation of 7 T ultra-high-field magnetic resonance imaging (MRI) in patients with suspected pituitary microadenomas for both adenoma detection and intrasellar localization compared with 3 T MRI was carried out.Materials and MethodsPatients underwent prospective preoperative standardized 3 and 7 T MRI. A distinct qualitative (lesion detection, intrasellar lesion location) and quantitative (lesion diameters, T1/T2 signal intensity ratio of the lesion to normal pituitary gland tissue) analysis was performed, along with an evaluation of image quality (IQ) regarding overall IQ, anatomical parameters, and artifacts; the findings of the qualitative analysis were compared with intraoperative findings and endocrinological outcomes.ResultsSixteen patients (mean age, 43 ± 16 years; 13 women) with pituitary microadenomas were included. Using 7 T MRI allowed the detection of 15 microadenomas—3 more than 3 T MRI. In addition, 7 T MRI allowed more precise lesion localization with 93.75% (15/16) agreement with intraoperative findings, compared with 75% (12/16) agreement using 3 T MRI. Lesion diameters showed no significant difference between 3 and 7 T MRI. T1 and T2 signal intensity ratio between microadenomas and normal pituitary gland tissue were higher in 7 T MRI than in 3 T MRI. The overall IQ and the IQ of each anatomical parameter of 7 T MRI were rated higher than those of 3 T MRI. No significant differences in susceptibility or head motion artifacts were observed between 3 and 7 T MRI; however, 7 T MRI was more susceptible to pulsation artifacts.ConclusionUltra-high-field MRI surpasses 3 T MRI in pituitary microadenoma detection and enables more precise delineation with higher correlation with intraoperative findings. Thus, 7 T sellar imaging is a promising option—especially in previously magnetic resonance–negative patients with endocrinologically confirmed hormone oversecretion—and helps reduce the need for invasive diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.