At the Washington International Workshop on Genotoxicity Test Procedures (March 25–26, 1999), the current methodologies and data for the in vitro micronucleus test were reviewed. From this, guidelines for the conduct of specific aspects of the protocol were developed. Because there are a number of important in vitro micronucleus validation studies in progress, it was not possible to design a definitive, internationally harmonized protocol at this time. Agreement was achieved on the following topics: Cells. The choice of cells is flexible, yet the choice of cell type should be justified and take into consideration doubling time, spontaneous frequency of micronuclei, and genetic background. Slide preparation. A fixation method that preserves the cytoplasm and cytoplasmic boundaries, and minimizes clumping should be used. Use of fluorescent DNA‐specific dyes is encouraged for better detection of small micronuclei. Analysis. Micronuclei should have a diameter less than one‐third of the main nucleus, and should be clearly distinguishable from the main nucleus. In the cytokinesis‐block method, binucleated cells selected for analysis should have two clearly distinguishable main nuclei. Cells where the main nucleus(ei) is undergoing apoptosis should not be scored for micronuclei because the assumed micronuclei may have been the result of nuclear fragmentation during the apoptotic process. Toxicity. Cytotoxicity can be measured by various methods including cell growth, cell counts, nucleation (i.e., percent binucleated), division/proliferation index, confluence. A majority of the group recommended that the highest concentration should induce at least 50% cytotoxicity (by whatever measure is selected). Cytochalasin B. There is much debate regarding the use of cytochalasin B. For human lymphocytes, the use of cytochalasin B (6 μg/ml [lymphocytes cultured from whole blood cells] and 3–6 μg/ml [isolated lymphocyte cultures]) is recommended. For cell lines, because there were no definitive data showing a clear advantage or disadvantage of the use of cytochalasin B for a variety of chemicals, the majority opinion of the group was that at this time, the use of cytochalasin B for cell lines is considered optional. Further studies (many chemicals of a variety of potencies, tested both with and without cytochalasin B) are clearly needed to resolve this issue. Number of doses. At least three concentrations should be scored for micronuclei. Treatment/harvest times. At this time, there are not enough data to define the most appropriate treatment/harvest times. Following the principles of the in vitro metaphase assay (with or without metabolic activation), it was agreed that there was a need for a short treatment followed by a recovery time in the absence of test chemical, there was a need for a long treatment (maybe with and without recovery time), and ideally, treatment should cover cells in different cell cycle stages. Environ. Mol. Mutagen. 35:167–172, 2000 © 2000 Wiley‐Liss, Inc.
We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow™ DNA Damage Kit— p53, γH2AX, Phospho-histone H3. For these experiments seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and non-genotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hrs. At 4 and 24 hrs cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all inter-laboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or non-genotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals’ predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay.
Good cell culture practice and characterization of the cell lines used are of critical importance in in vitro genotoxicity testing. The objective of this initiative was to make continuously available stocks of the characterized isolates of the most frequently used mammalian cell lines in genotoxicity testing anywhere in the world ('IVGT' cell lines). This project was organized under the auspices of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing. First, cell isolates were identified that are as close as possible to the isolate described in the initial publications reporting their use in genotoxicity testing. The depositors of these cell lines managed their characterization and their expansion for preparing continuously available stocks of these cells that are stored at the European Collection of Cell Cultures (ECACC, UK) and the Japanese Collection of Research Bioresources (JCRB, Japan). This publication describes how the four 'IVGT' cell lines, i.e. L5178Y TK 3.7.2C, TK6, CHO-WBL and CHL/IU, were prepared for deposit at the ECACC and JCRB cell banks. Recommendations for handling these cell lines and monitoring their characteristics are also described. The growth characteristics of these cell lines (growth rates and cell cycles), their identity (karyotypes and genetic status) and ranges of background frequencies of select endpoints are also reported to help in the routine practice of genotoxicity testing using these cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.