Staphylococcus aureus is an important pathogen capable of causing a wide spectrum of diseases in humans and animals. This bacterium expresses a variety of virulence factors that participate in the process of infection. These include MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that mediate the adherence of the bacteria to host extracellular matrix components, such as collagen, fibronectin (Fn), and fibrinogen (Fg). Two Fn-binding MSCRAMMs, FnbpA and FnbpB, have been previously identified. The Fn binding activity has been localized to the ϳ40-amino acid residue D repeats in the C-terminal part of these proteins. However, no biological activity has yet been attributed to the N-terminal A regions of these proteins. These regions exhibit substantial amino acid sequence identity to the A regions of other staphylococcal MSCRAMMs, including ClfA, ClfB, and SdrG (Fbe), all of which bind Fg. This raises the question of whether the Fn-binding MSCRAMMs can also bind specifically to Fg. In this report, we show that a recombinant form of the A region of FnbpA does specifically recognize Fg. We localize the binding site in Fg for recombinant FnbpA to the ␥-chain, in particular to the C-terminal residues of this polypeptide, the site also recognized by ClfA. In addition, we demonstrate that recombinant FnbpA can compete with ClfA for binding to both immobilized and soluble Fg. By the use of surface plasmon resonance spectroscopy and fluorescence polarization, we determine the dissociation equilibrium constant for the interaction of recombinant FnbpA with intact immobilized Fg and with a synthetic C-terminal ␥-chain peptide, respectively. Finally, by overexpressing FnbpA in a mutant strain of S. aureus that lacks the expression of both ClfA and ClfB, we show that native FnbpA can mediate the interaction of S. aureus with soluble Fg.
We report here the crystal structure of the minimal ligand-binding segment of the Staphylococcus aureus MSCRAMM, clumping factor A. This ®brinogen-binding segment contains two similarly folded domains. The fold observed is a new variant of the immunoglobulin motif that we have called DE-variant or the DEv-IgG fold. This subgroup includes the ligand-binding domain of the collagen-binding S.aureus MSCRAMM CNA, and many other structures previously classi®ed as jelly rolls. Structure predictions suggest that the four ®brinogen-binding S.aureus MSCRAMMs identi®ed so far would also contain the same DEv-IgG fold. A systematic docking search using the C-terminal region of the ®brinogen g-chain as a probe suggested that a hydrophobic pocket formed between the two DEv-IgG domains of the clumping factor as the ligand-binding site. Mutagenic substitution of residues Tyr256, Pro336, Tyr338 and Lys389 in the clumping factor, which are proposed to contact the terminal residues 408 AGDV 411 of the g-chain, resulted in proteins with no or markedly reduced af®nity for ®brinogen.
Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin‐binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin‐binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin‐binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non‐invasive Gram‐positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin α5β1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.