Genes whose expression is regulated by sulfate starvation in Escherichia coli were identified by generating random translational lacZ fusions in the chromosome with the placMu9 system. Nine lacZ fusion strains which expressed -galactosidase after growth under sulfate starvation conditions but not after growth in the presence of sulfate were found. These included two strains with insertions in the dmsA and rhsD genes, respectively, and seven strains in which the insertions were located within a 1.8-kb region downstream of hemB at 8.5 minutes on the E. coli chromosome. Analysis of the nucleotide sequence of this region indicated the presence of four open reading frames designated tauABCD. Disruption of these genes resulted in the loss of the ability to utilize taurine (2-aminoethanesulfonate) as a source of sulfur but did not affect the utilization of a range of other aliphatic sulfonates as sulfur sources. The TauA protein contained a putative signal peptide for transport into the periplasm; the TauB and TauC proteins showed sequence similarity to ATP-binding proteins and membrane proteins, respectively, of ABC-type transport systems; and the TauD protein was related in sequence to a dichlorophenoxyacetic acid dioxygenase. We therefore suggest that the proteins encoded by tauABC constitute an uptake system for taurine and that the product of tauD is involved in the oxygenolytic release of sulfite from taurine. The transcription initiation site was detected 26 to 27 bp upstream of the translational start site of tauA. Expression of the tauD gene was dependent on CysB, the transcriptional activator of the cysteine regulon.
The potent tumoricidal activity of interleukin 12 (IL-12) is thought to be mediated by the activation and polarization of natural killer (NK) cells and T helper type 1 (T(H)1) cells, respectively. By systematic analysis of the IL-12-induced immune response to subcutaneous melanoma (B16), we found that tumor suppression was mediated independently of T lymphocytes or NK cells. IL-12 initiated local antitumor immunity by stimulating a subset of NKp46(+) lymphoid tissue-inducer (LTi) cells dependent on the transcription factor RORγt. The presence of these NKp46(+) LTi cells induced upregulation of adhesion molecules in the tumor vasculature and resulted in more leukocyte invasion. Thus, this innate cell type is responsive to IL-12 and is a powerful mediator of tumor suppression.
p53 mutants in tumours have a reduced affinity for DNA and a reduced ability to induce apoptosis. We describe a mutant with the opposite phenotype, an increased affinity for some p53-binding sites and an increased ability to induce apoptosis. The apoptotic function requires transcription activation by p53. The mutant has an altered sequence specificity and selectively fails to activate MDM2 transcription. Loss of MDM2 feedback results in overexpression of the mutant, but the mutant kills better than wild-type p53 even in MDM2-null cells. Thus the apoptotic phenotype is due to a combination of decreased MDM2 feedback control and increased or unbalanced expression of other apoptosis-inducing p53 target genes. To identify these genes, DNA chips were screened using RNA from cells expressing the apoptosis-inducing mutant, 121F, and a sequence-specificity mutant with the reciprocal phenotype, 277R. Two potential new mediators of p53-dependent apoptosis were identified, Rad and PIR121, which are induced better by 121F than wild-type p53 and not induced by 277R. The 121F mutant kills untransformed MDM2-null but not wild-type mouse embryo fibroblasts and kills tumour cells irrespective of p53 status. It may thus expand the range of tumours which can be treated by p53 gene therapy.
In the embryonic midgut of Drosophila, Wingless (Wg) signaling elicits threshold-specific transcriptional response, that is, low-signaling levels activate target genes, whereas high-signaling levels repress them. Wg-mediated repression of the HOX gene Ultrabithorax (Ubx) is conferred by a response sequence within the Ubx B midgut enhancer, called WRS-R. It further depends on the Teashirt (Tsh) repressor, which acts through the WRS-R without binding to it. Here, we show that Wg-mediated repression of Ubx B depends on Brinker, which binds to the WRS-R. Furthermore, Brinker blocks transcriptional activation by ubiquitous Wg signaling. Brinker binds to Tsh in vitro, recruits Tsh to the WRS-R, and we find mutual physical interactions between Brinker, Tsh, and the corepressor dCtBP. This suggests that the three proteins may form a ternary repressor complex at the WRS-R to quench the activity of the nearby-bound dTCF/Armadillo transcription complex. Finally, brinker and tsh produce similar mutant phenotypes in the ventral epidermis, and double mutants mimic overactive Wg signaling in this tissue. This suggests that Brinker may have a widespread function in antagonizing Wg signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.