We study epitaxial graphene on the 6H-SiC(0001) surface under ambient conditions using frequency-modulation atomic force microscopy. We observe large terraces with a self-assembled stripe structure within a highly adsorbate covered surface on top of the graphene. To identify the origin of the structure, we compare the experimental data on graphene with calculations and experiments on graphite that predict the formation of a solid-gas monolayer in the solid-liquid interface of hydrophobic surfaces.
The aim of this in vitro study was to evaluate the influence of physicochemical surface properties of resin-based composites on Streptococcus mutans biofilm formation. Specimens were prepared from each of four resin-based composites by polymerization against Mylar strips. Half of the number of specimens received no further surface treatment, whereas the other half were subjected to a polishing treatment. Surface roughness (SR) and topography were assessed using profilometry and atomic force microscopy. Surface free-energy (SFE) was determined, and the chemical surface composition was analysed by X-ray photoelectron spectroscopy (XPS). S. mutans biofilms were formed on the surface of the resin-based composite specimens for either 48 or 96 h using an artificial mouth system (AMS). Polishing caused a significant decrease in SFE, and XPS analysis indicated an increase of surface silicon and a decrease of surface carbon. Only for Grandio was a significant increase in SR identified after polishing, which was probably related to the higher concentration of filler particles on its surface. Significantly less S. mutans biofilm formation was observed on polished resin-based composites than on unpolished resin-based composites. These results indicate that the proportions of resin matrix and filler particles on the surface of resin-based composites strongly influence S. mutans biofilm formation in vitro, suggesting that minimization of resin matrix exposure might be useful to reduce biofilm formation on the surface of resin-based composites.
We report on atomic force microscopy (AFM) in ambient and liquid environments with the qPlus sensor, a force sensor based on a quartz tuning fork with an all-electrical deflection measurement scheme. Small amplitudes, stiff sensors with bulk diamond tips and high Q values in air and liquid allow to obtain high resolution images. The noise sources in air and liquid are analyzed and compared for standard silicon cantilevers and qPlus sensors. First, epitaxial graphene was imaged in air, showing atomic steps with 3 Å height and ridges. As a second sample system, measurements on calcite (CaCO 3 ) in liquids were performed in water and polyethylenglycol (PEG). We demonstrate high resolution images of steps in PEG on calcite and nanolithography processes, in particular with frequency-modulation AFM the controlled dissolution of calcite monolayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.