In the current industrial research on centrifugal compressors, manufacturers are showing increasing interest in the extension of the minimum stable flow limit in order to improve the operability of each unit. The aerodynamic performance of a compressor stage is indeed often limited before surge by the occurrence of diffuser rotating stall. This phenomenon generally causes an increase of the radial vibrations, which, however, is not always connected with a remarkable performance detriment. In case the operating curve has been limited by a mechanical criterion, i.e., based on the onset of induced vibrations, an investigation on the evolution of the aerodynamic phenomenon when the flow rate is further reduced can provide some useful information. In particular, the identification of the real thermodynamic limit of the system could allow one to verify if the new load condition could be tolerated by the rotordynamic system in terms of radial vibrations. Within this context, recent works showed that the aerodynamic loads due to a vaneless diffuser rotating stall can be estimated by means of test-rig experimental data of the most critical stage. Moreover, by including these data into a rotordynamic model of the whole machine, the expected vibration levels in real operating conditions can be satisfactorily predicted. To this purpose, a wide-range analysis was carried out on a large industrial database of impellers operating in presence of diffuser rotating stall; the analysis highlighted specific ranges for the resultant rotating force in terms of intensity and excitation frequency. Moving from these results, rotordynamic analyses have been performed on a specific case study to assess the final impact of these aerodynamic excitations.
One of the main challenges of the present industrial research on centrifugal compressors is the need for extending the left margin of the operating range of ihe machines. As a result, interest is being paid to accurately evaluating the amplitude of the pressure fluctuations caused by rotating stall, which usually occurs prior to surge. The related aerodynamic force acting on the rotor can produce subsynchronous vibrations, which can prevent the machine's further operation, in case their amplitude is too high. These vibrations are often contained due to the stiffness of the oil journals. Centrifugal compressor design is, however, going towards alternative journal solutions having lower stiffness levels (e.g., active magnetic bearings or squeeze fllm dampers), which will be more sensitive to this kind of excitation: consequently, a more accurate estimation of the expected forces in the presence of dynamic external forces such as those connected to an aerodynamically unstable condition is needed to predict the vibration level and the compressor operability in similar conditions. Within this scenario, experimental tests were carried out on industrial impellers operating at high peripheral Mach numbers. The dedicated test rig was equipped with several dynamic pressure probes that were inserted in the gas flow path; moreover, the rotor vibrations were constantly monitored with typical vibration probes located near the journal bearings. The pressure fleld induced by the rotating stall in the vaneless diffuser was reconstructed by means of an ensemble average approach, thus deflning the amplitude and frequency of the external force acting on the impeller. The calculated force value was then included in the rotordynamic model of the test rig: the predicted vibrations on the bearings were compared with the measurements, showing satisfactory agreement. Moreover, the procedure was applied to two real multistage compressors, showing notable prediction capabilities in the description of rotating stall effects on the machine rotordynamics. Finally, the prospects of the proposed approach are discussed by investigating the response of a real machine in high-pressure functioning when different choices of journal bearings are made.
The present work presents the results obtained from the numerical investigation of the 3D unsteady flow field in a film-cooled turbine vane. The blade under research is the AGTB-B1 investigated in the cascade of the High Speed Cascade Wind Tunnel of the University of Armed Forces Munich. The unsteady flow consists of a wake which periodically interacts with the shower-head film cooling system of the blade nose. The paper discusses the aerodynamical interaction between the film-cooled blade and the periodic wake produced by a moving row of bars placed in a plane upstream the cascade. The predictive approach is based on a U-RANS CFD solver using a conventional two-equation closure. The unsteady CFD results are discussed against the experimental data available. Special emphasis is devoted to the unsteady interaction of the wake with the shower-head film-cooling system of the blade.
Two stators of a multistage centrifugal compressor with progressively smaller outer radii have been designed, built, and tested. The aim was to achieve a significant reduction in the outer diameter of the compressor stage without compromising performance. The reduction in size was achieved by reducing the diffusion ratio (outer radius/inner radius) of the vaneless diffuser in two steps. In the first step, the outer diameter of the entire stage was reduced by 8% compared with the baseline design. In the second stage, the outer diameter was reduced by 14%. The outer radius of the smallest design was limited by the impeller exit diameter, which was kept constant, as was the axial length of the stage. The large radius baseline design has been tested on a rotating rig in a 1.5 stage setup. This setup aimed at simulating the multistage behavior by applying a pseudostage upstream of the main stage. The pseudostage consisted of a set of nonrotating preswirl vanes in order to mimic an upstream impeller and was followed by a scaled version of the return channel of the main stage. The experimental database was then used to calibrate a 1D analysis code and 3D–computational fluid dynamics methods for the ensuing design and optimization part. By applying an extensive design-of-experiments, the endwalls as well as the vanes of the stator part were optimized for maximum efficiency and operation range. In order to preserve the multistage performance, the optimization was constrained by keeping the circumferentially averaged spanwise flow profiles at the exit of the smaller radius stages within close limits to the original design. The reduced radius designs were then tested in the same 1.5 stage setup as the baseline design. The results indicate that the reduction in size was feasible without compromising the efficiency and operation range of the stage.
An accurate estimation of rotating stall is one of the key technologies for high-pressure centrifugal compressors, as it is often connected with the onset of detrimental subsynchronous vibrations which can prevent the machine from operating beyond this limit. With particular reference to the vaneless diffuser stall, much research has been directed at investigating the physics of the phenomenon, the influence of the main design parameters and the prediction of the stall inception. Few of them, however, focused attention on the evaluation of the aerodynamic unbalance due to the induced pressure field in the diffuser, which, however, could provide a valuable contribution to both the identification of the actual operating conditions and the enhancement of the compressor operating range by a suitable choice of the control strategy. Although advanced experimental techniques have been successfully applied to the recognition of the stall pattern in a vaneless diffuser, the most suitable solution for a wider application in industrial test-models is based on dynamic pressure measurements by means of a reduced number of probes. Within this context, a procedure to transpose pressure measurements into the spatial pressure distribution was developed and validated on a wide set of industrial test-models. In this work, the main guidelines of the procedure are presented and discussed, with particular reference to signals analysis and manipulation as well as sensors positioning. Moreover, the prospects of using a higher number of sensors is analyzed and compared to standard solutions using a limited probes number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.