Background The breeding population is very important in pig herds, for productivity, health and profitability. Replacement of breeding animals can be accomplished by own rearing of breeding gilts or by purchasing them. Purchasing breeding gilts is a hazardous event in terms of biosecurity and introduction of pathogens into a farm. However, in literature, little is known about gilt introduction in a herd. The present study investigated the introduction procedures of purchased breeding gilts in Belgian pig herds, and the compliance of these herds to the optimal introduction procedures. A questionnaire consisting of twenty questions related to farm characteristics (n = 2), purchasing policy (n = 6), quarantine period (n = 5), and acclimation practices (n = 7) was designed, and 68 farms completed the questionnaire during an on-farm interview. Results The median (min. – max.) number of sows on the farms was 300 (85–2500). Fifty-seven per cent of the farms purchased breeding gilts, and there was a lot of variation in the frequency of purchase and the age at which gilts are purchased. On 95 % of those farms, a quarantine unit was used, and on most of these farms the quarantine was located on the farm itself (internal quarantine). The median (min. – max.) duration of the quarantine period was 42 (14–140) days. The most common acclimation practice was vaccination against Porcine parvovirus (96 %) and Erysipelothrix rhusiopathiae (94 %), although in some farms exposure of gilts to farm-specific micro-organisms was done by providing faeces from suckling piglets (18 %) and bringing gilts in contact with sows that will be culled (16 %). Only 10 % of the farms complied with the optimal introduction procedures, i.e. purchasing policy, quarantine building and quarantine management. Conclusions This study showed that in many farms, practices related to purchasing, quarantine and acclimation could be improved to maintain optimal biosecurity.
The goal of this study is to describe the current use of antibiotics in the European pig industry based on an extensive literature review. To achieve this, an overview of results from national (n = 15) and multi-country (n = 2) cross-sectional and longitudinal (n = 2) surveys, which describe antimicrobial use in pigs, is presented. Results are further linked to the outcome of the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) project. Overall, it was found that weaned piglets received the most antibiotics, followed by suckling piglets resulting in over 80% of the treatments being administered to animals before 10 weeks of age. Furthermore, it was observed that antibiotic use (ABU) was significantly associated across age categories, indicating that farms with a high use in piglets also used more antibiotics in their finishers. This may, among other things, be explained by farmers’ habits and behavior. However, above all, the studies showed surprisingly large differences in ABU between the countries. These differences may be related to the differences in disease prevalence and/or differences in the level of biosecurity. However, they may also reflect variations in rules and regulations between countries and/or a difference in attitude towards ABU of farmers and veterinarians that are not necessarily linked to the true animal health situation. Furthermore, it was observed that already a substantial proportion of the European pig production is able to successfully raise pigs without any group treatments, indicating that it is possible to rear pigs without systematic use of antibiotics. Based on the ESVAC data, a decline of 43.2% was observed in sales of antibiotics for animals in Europe between 2011 and 2020. To enable efficient antimicrobial quantification and stewardship, 15 European countries have already established systems for herd level monitoring ABU in pigs.
Reduced and responsible antimicrobial use leads to a lower risk of developing antimicrobial resistance. Raised Without Antibiotics (RWA) is a certification label that is recognized in only a few countries, and it is often unclear what the specific criteria and characteristics of RWA farms are. The objectives of this study were to describe the criteria for a Belgian RWA program; to coach farms towards reduced antimicrobial usage (AMU); to assess if it was possible to obtain and maintain the RWA status; and to determine differences between RWA and conventional pig farms. Pig farms (n = 28) were visited three times for the following reasons: (1) data collection, (2) farm-specific coaching (2 months later), and (3) evaluation (7 months later). AMU was followed from before the start of the study up to one year after the last visit. AMU, biosecurity (Biocheck.UGentTM), and farm characteristics of (non-)RWA farms were compared. RWA was defined as no antibiotics from birth until slaughter. Pigs requiring individual treatment received a special ear tag and were excluded from the program. The status of the farms varied over time, and the distribution of RWA vs. non-RWA was 10–18, 13–15, and 12–16, before intervention, after coaching, and after one year, respectively. For the non-RWA farms, there was a reduction in AMU of 61%, 38%, and 23%, for the suckling piglets, fattening pigs, and sows, respectively, indicating that they were moving toward the RWA status. There were no significant differences in biosecurity status between RWA and non-RWA farms, but biosecurity improved in all farms throughout the study. RWA farms were smaller (median 200 sows) compared to non-RWA farms (median 350 sows). The 4-week system was used more in non-RWA farms, while the 3- and 5-week systems were used most often in RWA farms. This study showed that farmers could achieve and maintain the RWA status through farm-specific coaching related to prudent AMU and improved biosecurity.
Background Good estrus detection in sows is essential to predict the best moment of insemination. Nowadays, a technological innovation is available that detects the estrus of the sow via connected sensors and cameras. The collected data are subsequently analyzed by an artificial intelligence (AI) system. This study investigated whether such an AI system could support the farmer in optimizing the moment of insemination and reproductive performance. M&M Three Belgian sow farms (A, B and C) where the AI system was installed, participated in the study. The reproductive cycles (n = 6717) of 1.5 years before and 1.5 years after implementation of the system were included. Parameters included: (1) farrowing rate (FR), (2) percentage of repeat-breeders (RB), (3) farrowing rate after first insemination (FRFI) and (4) number of total born piglets per litter (NTBP). Also, data collected by the system were analyzed to describe the weaning-to-estrus interval (WEI), estrus duration (ED) and the number of inseminations used per estrus. This dataset included 2261 cycles, collected on farms B and C. Results In farm A, all parameters significantly improved namely FR + 4.3%, RB − 3.75%, FRFI + 6.2% and NTBP + 1.06 piglets. In farm B, the NTBP significantly decreased with 0.48 piglets, but in this farm the insemination dose was too low (0.8 × 109 spermatozoa per dose). In farm C, only the NTBP significantly increased with 0.45 piglets after the implementation of the system. The WEI as determined by the system varied between 78 and 90 h, being 10–20 h shorter in comparison with the WEI as determined by the farmer. The ED, determined by the system ranged from 48 to 60 h, and was less variable as compared to the ED as assessed by the farmer. The mean number of inseminations per estrus remained similar over time in farm B whereas it decreased over time from approximately 1.6–1.2 in farm C. Conclusion The AI system can help farmers to improve the reproductive performance, assess estrus characteristics and reduce the number of inseminations per estrus. Results may vary between farms as many other variables such as farm management, genetics and insemination dose also influence reproductive performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.