IntroductionThe Advancing Research and Treatment in Frontotemporal Lobar Degeneration and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects longitudinal studies were designed to describe the natural history of familial‐frontotemporal lobar degeneration due to autosomal dominant mutations.MethodsWe examined cognitive performance, behavioral ratings, and brain volumes from the first time point in 320 MAPT, GRN, and C9orf72 family members, including 102 non–mutation carriers, 103 asymptomatic carriers, 43 mildly/questionably symptomatic carriers, and 72 carriers with dementia.ResultsAsymptomatic carriers showed similar scores on all clinical measures compared with noncarriers but reduced frontal and temporal volumes. Those with mild/questionable impairment showed decreased verbal recall, fluency, and Trail Making Test performance and impaired mood and self‐monitoring. Dementia was associated with impairment in all measures. All MAPT carriers with dementia showed temporal atrophy, but otherwise, there was no single cognitive test or brain region that was abnormal in all subjects.DiscussionImaging changes appear to precede clinical changes in familial‐frontotemporal lobar degeneration, but specific early clinical and imaging changes vary across individuals.
Frontotemporal dementia (FTD), marked by impairments in behavior, language and sometimes motor function, is a common form of early-onset dementia 1 . Approximately 20-30% of FTD is caused by autosomal dominant mutations (familial, or f-FTD), usually in one of three genes: chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN) or microtubule-associated protein tau (MAPT) 2 . FTD is uniformly fatal, and there are no approved therapies; however, a growing number of new treatments targeting C9orf72, GRN and MAPT are moving into clinical trials 3,4 . Experience from Alzheimer's disease (AD), spinal muscular Temporal order of clinical and biomarker changes in familial frontotemporal dementia
This observation study characterizes regions and rates of atrophy in the 3 primary familial frontotemporal lobar degeneration genes ( MAPT , GRN , and C9orf72 ) across all disease stages from asymptomatic to dementia.
Increased presynaptic dysfunction measured by cerebrospinal fluid (CSF) growth-associated protein-43 (GAP43) may be observed in Alzheimer's disease (AD), but how CSF GAP43 increases relate to AD-core pathologies, neurodegeneration, and cognitive decline in AD requires further investigation. Methods: We analyzed 731 older adults with baseline β-amyloid (Aβ) positron emission tomography (PET), CSF GAP43, CSF phosphorylated tau181 (p-Tau 181 ), and 18 F-fluorodeoxyglucose PET, and longitudinal residual hippocampal volume and cognitive assessments. Among them, 377 individuals had longitudinal 18 F-fluorodeoxyglucose PET, and 326 individuals had simultaneous longitudinal CSF GAP43, Aβ PET, and CSF p-Tau 181 data. We compared baseline and slopes of CSF GAP43 among different stages of AD, as well as their associations with Aβ PET, CSF p-Tau 181 , residual hippocampal volume, 18 F-fluorodeoxyglucose PET, and cognition cross-sectionally and longitudinally. Results: Regardless of Aβ positivity and clinical diagnosis, CSF p-Tau 181 -positive individuals showed higher CSF GAP43 concentrations (p < 0.001) and faster rates of CSF GAP43 increases (p < 0.001) compared with the CSF p-Tau 181negative individuals. Moreover, higher CSF GAP43 concentrations and faster rates of CSF GAP43 increases were strongly related to CSF p-Tau 181 independent of Aβ PET. They were related to more rapid hippocampal atrophy, hypometabolism, and cognitive decline (p < 0.001), and predicted the progression from MCI to dementia (area under the curve for baseline 0.704; area under the curve for slope 0.717) over a median 4 years of follow up. Interpretation: Tau aggregations rather than Aβ plaques primarily drive presynaptic dysfunction measured by CSF GAP43, which may lead to sequential neurodegeneration and cognitive impairment in AD or neurodegenerative diseases.
A biological research framework to define Alzheimer’ disease with dichotomized biomarker measurement was proposed by National Institute on Aging–Alzheimer’s Association (NIA–AA). However, it cannot characterize the hierarchy spreading pattern of tau pathology. To reflect in vivo tau progression using biomarker, we constructed a refined topographic 18F-AV-1451 tau PET staging scheme with longitudinal clinical validation. Seven hundred and thirty-four participants with baseline 18F-AV-1451 tau PET (baseline age 73.9 ± 7.7 years, 375 female) were stratified into five stages by a topographic PET staging scheme. Cognitive trajectories and clinical progression were compared across stages with or without further dichotomy of amyloid status, using linear mixed-effect models and Cox proportional hazard models. Significant cognitive decline was first observed in stage 1 when tau levels only increased in transentorhinal regions. Rates of cognitive decline and clinical progression accelerated from stage 2 to stage 3 and stage 4. Higher stages were also associated with greater CSF phosphorylated tau and total tau concentrations from stage 1. Abnormal tau accumulation did not appear with normal β-amyloid in neocortical regions but prompt cognitive decline by interacting with β-amyloid in temporal regions. Highly accumulated tau in temporal regions independently led to cognitive deterioration. Topographic PET staging scheme have potentials in early diagnosis, predicting disease progression, and studying disease mechanism. Characteristic tau spreading pattern in Alzheimer’s disease could be illustrated with biomarker measurement under NIA–AA framework. Clinical–neuroimaging–neuropathological studies in other cohorts are needed to validate these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.