The Northern Andes of Colombia is a key locality for understanding tectonic inversion of symmetric rifts. A review of available data on structural geometry and deformation timing, and new thermochronology and provenance data from selected localities, enable the construction of balanced cross-sections and shortening budgets. During early deformation in the Palaeocene, most shortening was focused in the western sector of the orogen, in the Central Cordillera and the Magdallena Valley, although widely spaced and mild inversion occur in areas as far to the east as the Llanos Basin. After a period of tectonic quiescence in the Middle Eocene, deformation resumed across a former early Mesozoic graben in the Eastern Cordillera. Peak shortening rates and out-of-sequence reactivation of the main inversion faults were in place in latest Miocene time, during a phase of topographical growth. Our results indicate that coeval activation of basement highs and adjacent slower-slip shortcuts appear to be characteristic of inverted symmetric grabens. However, before reactivation and brittle faulting occur, strain hardening is required. Deformation rates in the Eastern Cordillera correlate with the westwards velocity of the South American Plate. A threshold convergence rate of approximately 2 cm year−1 seems to be necessary to activate shortening in the upper plate.
Surface uplift of the Garzón Massif in the northern Andes formed a criti cal orographic barrier (2500-3000 m elevation) that generated a deep rain shadow and strongly influenced the evolution of the largest river systems draining northern South America. This basement massif and its correspond ing foreland basement high define the headwaters and drainage divides of the Amazon, Orinoco, and Magdalena Rivers. Despite its pivotal role, the exhumation history of the Garzón Massif and its relationships to the struc tural evolution of the broader Eastern Cordillera foldthrust belt remain unclear. The northern Andes underwent major Cenozoic shortening, with considerable thinskinned and thickskinned deformation and topographic development in the Eastern Cordillera focused during late Miocene time. On the basis of widespread coarsegrained nonmarine sedimentation, pre vious studies have inferred that uplift of the Garzón Massif began during the late Miocene, coincident with rapid elevation gain elsewhere in the Eastern Cordillera. We take an integrated, multiproxy approach to better reconstruct Andean topographic growth and distinguish between exhumation and surface uplift of the Garzón Massif. We present new UPb detrital zircon provenance data, sandstone petrographic data, and paleoprecipitation data from upper Mio cene clastic fill of the Neiva Basin within the adjacent Upper Magdalena Valley of the modern hinterland. In addition, six new apatite fission track (AFT) ages from the central segment of the northeasttrending Garzón Massif (Jurassic granite and Proterozoic gneiss and schist) directly constrain its Neogene exhu mation history. The results indicate that early exhumation may have initiated by ca. 12.5 Ma, but a substantial orographic barrier was not fully established until ca. 6-3 Ma, when >1 km/m.y. of material was exhumed. Thermal his tory modeling of the AFT data suggests diminished exhumation thereafter (3-0 Ma), during latest Cenozoic oblique Nazca-South America convergence. This exhumation history is consistent with paleontological data suggesting late Miocene divergence of the three river systems, with associated trans conti nental drainage of the Amazon River.
We use the Eastern Cordillera of Colombia as an example in early stages of inversion orogen showing still modest values of shortening. The style of deformation recorded in this orogenic chain seems to be strongly influenced by two main factors. The first is the pre-compression geometry of the rift basin, conditioning the strong heterogeneity imparted by a trough filled with Jurassic to Neocomian sediments limited by Precambrian and Palaeozoic high-angle walls. The second factor is the orientation of the stress regime with respect to the main normal faults during the inversion. If the stress field is of pure compression, the normal faults are not extensively inverted and the deformation is accommodated mainly in terms of footwall shortcuts. On the other hand, in transpressive regimes the inversion of the former normal faults is more common and the footwall shortcuts are not dominant structures. No significant lateral variations in tectonic shortening are found in the Eastern Cordillera. Finally we emphasize the role of buckle folds in the internal parts of the inversion orogens and give a cautionary note when interpreting these structures in terms of fault-related folding using the well-documented example of the Soapaga fault area.
A series of balanced cross-sections across the Sub-Atlas thrust belt and the northern Ouarzazate basin are used to illustrate the structural geometry and the timing of deformation at the southern front of the High Atlas Mountains of Morocco. The selected area is among the best sedimentary records of mountain building of the entire orogenic system. The study of the relationships between thrusts and synorogenic continental formations enables the unraveling of kinematic sequences and the proposal of a relative chronology of deformation. Active thrusting in the area occurred in a rather continuous fashion from the Oligocene to the Pliocene, punctuated by a major erosional phase imprecisely placed in late Oligocene to early Miocene times. Detrital sedimentary facies indicate that uplift in the hinterland of the High Atlas, to the north of the Sub-Atlas belt, was taking place already by mid Eocene times, although it might have commenced locally even earlier. Within the Sub-Atlas zone, the exposed faults did not propagate in a simple piggyback fashion but show evidence of a complex, synchronous sequence with events of fault reactivation and out-of-sequence thrusting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.