Beehive products possess nutritional value and health-promoting properties and are recommended as so-called “superfoods”. However, because of their natural origin, they may contain relevant elemental contaminants. Therefore, to assess the quality of bee products, we examined concentrations of a broad range of 24 selected elements in propolis, bee pollen, and royal jelly. The quantitative analyses were performed with inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The results of our research indicate that bee products contain essential macronutrients (i.e., K, P, and S) and micronutrients (i.e., Zn and Fe) in concentrations depending on the products’ type. However, the presence of toxic heavy metals makes it necessary to test the quality of bee products before using them as dietary supplements. Bearing in mind that bee products are highly heterogenous and, depending on the environmental factors, differ in their elemental content, it is necessary to develop standards regulating the acceptable levels of inorganic pollutants. Furthermore, since bees and their products are considered to be an effective biomonitoring tool, our results may reflect the environment’s condition in west-central Poland, affecting the health and well-being of both humans and bees.
Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost’s proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations. Such preparations were analyzed using liquid chromatography coupled with tandem mass spectrometry. It was found that when higher concentrations of melittin and apamin were used, fewer proteins were identified. Moreover, the results clearly indicated that apamin demonstrates the greatest influence on the RBCs ghosts proteome. Interestingly, the data also suggest that tertiapin exerted a stabilizing effect on the erythrocyte membrane. The experiments carried out show the great potential of proteomic research in the projects focused on the toxin’s properties as membrane active agents. However, to determine the specificity of the effect of selected bee venom peptides on the erythrocyte ghosts, further proteomic research should be focused on the quantitative analysis.
Melittin (MEL) is a basic polypeptide originally purified from honeybee venom. MEL exhibits a broad spectrum of biological activity. However, almost all studies on MEL activity have been carried out on vertebrate models or cell lines. Recently, due to cheap breeding and the possibility of extrapolating the results of the research to vertebrates, insects have been used for various bioassays and comparative physiological studies. For these reasons, it is valuable to examine the influence of melittin on insect physiology. Here, for the first time, we report the immunotropic and cardiotropic effects of melittin on the beetle Tenebrio molitor as a model insect. After melittin injection at 10−7 M and 10−3 M, the number of apoptotic cells in the haemolymph increased in a dose-dependent manner. The pro-apoptotic action of MEL was likely compensated by increasing the total number of haemocytes. However, the injection of MEL did not cause any changes in the percent of phagocytic haemocytes or in the phenoloxidase activity. In an in vitro bioassay with a semi-isolated Tenebrio heart, MEL induced a slight chronotropic-positive effect only at a higher concentration (10−4 M). Preliminary results indicated that melittin exerts pleiotropic effects on the functioning of the immune system and the endogenous contractile activity of the heart. Some of the induced responses in T. molitor resemble the reactions observed in vertebrate models. Therefore, the T. molitor beetle may be a convenient invertebrate model organism for comparative physiological studies and for the identification of new properties and mechanisms of action of melittin and related compounds.
Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved.
BackgroundHymenoptera venom allergy is one of the most frequent causes of anaphylaxis. In its most severe form, the reaction to wasp and honey bee stings may be life-threatening. Therefore, immediate and proper diagnosis of venom allergy and implementation of suitable therapy are extremely important. Broadening the knowledge on the mechanism of the allergic reaction may contribute to the improvement of both diagnostic and treatment methods. Thus, this study aimed to discover changes in protein expression in serum of patients allergic to Hymenoptera (wasp and honeybee) venom and to point out proteins and peptides involved in the allergic inflammation.MethodsSerum proteomic patterns typical to allergic patients and healthy volunteers were obtained with MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometer. The spectra were processed, analyzed and compared using advanced bioinformatics tools. The discriminative peaks were subjected to identification with liquid chromatography coupled with tandem mass spectrometry.ResultsThis methodology allowed for the identification of four features differentiating between allergy and control groups. They were: fibrinogen alpha chain, coagulation factor XIII chain A, complement C4-A, and inter-alpha-trypsin inhibitor heavy chain H4. All of these proteins are involved in allergic inflammatory response.ConclusionsExtending the knowledge of the Hymenoptera venom sensitization will contribute to the development of novel, sensitive and specific methods for quick and unambiguous allergy diagnosis. Understanding the basis of the allergy at the proteomic level will support the improvement of preventive and therapeutic measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.