Latent membrane protein 1 (LMP1) is a constitutively active oncogenic signaling protein encoded by Epstein-Barr virus (EBV). Despite monoclonal infection in cases of nasopharyngeal carcinoma (NPC), it has been difficult to reconcile the heterogeneous LMP1 protein levels detected in tumor cells. The LMP1 protein is a pleiotropic signaling protein with oncogenic potential. Findings from this study are consistent with the hypothesis that LMP1 has a role distinct from that of oncogenesis that facilitates the viral life cycle by promoting an unstable but productive infection in differentiating epithelia.
Lifting adherent cells to the air-liquid interface (ALI) is a method conventionally used to culture airway epithelial cells into polarized apical and basolateral surfaces. Reactivation of Epstein-Barr virus (EBV) from monolayer epithelial cultures is sometimes abortive, which may be attributed to the lack of authentic reactivation triggers that occur in stratified epithelium in vivo. In the present work, the ALI culture method was applied to study EBV reactivation in nasopharyngeal epithelial cells. The ALI culture of an EBV-infected cell line yielded high titers and can be dissected by a variety of molecular virology assays that measure induction of the EBV lytic cascade and EBV genome replication and assembly. EBV infection of polarized cultures of primary epithelial cells can be challenging and can have variable efficiencies. However, the use of the ALI method with established EBV-infected cell lines offers a readily available and reproducible approach for the study of EBV permissive replication in polarized epithelia.
In Fig. 3B, one of the series for the FPKM values in the host transcriptome was mislabeled week 1 (wk1); it should instead be week 0 (wk0). The corrected graph is shown below. Citation Caves EA, Cook SA, Lee N, Stoltz D, Watkins S, Shair KHY. 2019. Erratum for Caves et al., "Air-liquid interface method to study Epstein-Barr virus pathogenesis in nasopharyngeal epithelial cells." mSphere 4: e00247-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.