Proteus mirabilis urease catalyzes the hydrolysis of urea, initiating the formation of urinary stones. The enzyme is critical for kidney colonization and the development of acute pyelonephritis. Urease is induced by urea and is not controlled by the nitrogen regulatory system (ntr) or catabolite repression. Purified whole-cell RNA from induced and uninduced cultures of P. mirabilis and Escherichia coli harboring cloned urease sequences was probed with a 4.2-kb BglI fragment from within the urease operon. Autoradiographs of slot blots demonstrated 4.2- and 5.8-fold increases, respectively, in urease-specific RNA upon induction with urea. Structural and accessory genes necessary for urease activity, ureD, A, B, C, E, and F, were previously cloned and sequenced (B. D. Jones and H. L. T. Mobley, J. Bacteriol. 171:6414-6422, 1989). A 1.2-kb EcoRV-BamHI restriction fragment upstream of these sequences confers inducibility upon the operon in trans. Nucleotide sequencing of this fragment revealed a single open reading frame of 882 nucleotides, designated ureR, which is transcribed in the direction opposite that of the urease structural and accessory genes and encodes a 293-amino-acid polypeptide predicted to be 33,415 Da in size. Autoradiographs of sodium dodecyl sulfate-polyacrylamide gels of [35S]methionine-labeled polypeptides obtained by in vitro transcription-translation of the PCR fragments carrying only ureR yielded a single band with an apparent molecular size of 32 kDa. Fragments carrying an in-frame deletion within ureR synthesized a truncated product. The predicted UreR amino acid sequence contains a potential helix-turn-helix motif and an associated AraC family signature and is similar to that predicted for a number of DNA-binding proteins, including E. coli proteins that regulate acid phosphatase synthesis (AppY), porin synthesis (EnvY), and rhamnose utilization (RhaR). These data suggest that UreR governs the inducibility of P. mirabilis urease.
Retroviral vectors were constructed containing a rat .8-glucuronidase cDNA driven by heterologous pro-
Proteus mirabilis, a common agent of nosocomially acquired and catheter-associated urinary tract infection, is the most frequent cause of infection-induced bladder and kidney stones. Urease-catalyzed urea hydrolysis initiates stone formation in urine and can be inhibited by acetohydroxamic acid and other structural analogs of urea. Since P. mirabilis urease is inducible with urea, there has been some concern that urease inhibitors actually induce urease during an active infection, thus compounding the problem of elevated enzyme activity. Quantitating induction by compounds that simultaneously inhibit urease activity has been difficult. Therefore, to study these problems, we constructed a fusion of ureA (a urease subunit gene) and lacZ (the ,-galactosidase gene) within plasmid pMID1010, which encodes an inducible urease of P. mirabilis expressed in E. coli JM103 (Lac-). The fusion protein, predicted to be 117 kDa, was induced by urea and detected on Western blots (immunoblots) with anti--galactosidase antiserum. Peak j-galactosidase activity of 9.9 ,umol of ONPG (o-nitrophenyl-jl-D-galactopyranoside) hydrolyzed per min per mg of protein, quantitated spectrophotometrically, was induced at 200 mM urea. The uninduced rate was 0.2 ,umol of ONPG hydrolyzed per min per mg of protein. Induction was specific for urea, as no structural analog of urea (including acetohydroxamic acid, hydroxyurea, thiourea, hippuric acid, flurofamide, or hydroxylamine) induced fusion protein activity. These data suggest that induction by inactivation of UreR, the urease repressor protein that governs regulation of the urease operon, is specific for urea and does not respond to closely related structural analogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.