Highlights d CD4 + T cells from healthy older people preferentially produce a Th17 profile d Autophagy, but not mitophagy, knockdown activates a Th17 profile in ''young'' cells d Mitochondrial ROS is needed, but not sufficient, for a Th17 profile in ''young'' cells d Metformin improves autophagy and mitochondria in parallel to decrease inflammaging
Supported lipid bilayers are widely used as model systems due to their robustness. Due to the solid support, the properties of supported lipid bilayers are different from those of freestanding bilayers. In this article, we examine whether different surface treatments affect the properties of supported lipid bilayers. It will be shown that depending on the treatment method, the diffusion of the lipids can be adjusted approximately threefold without altering the composition. Additionally, as the bilayer-support interaction decreases, it becomes easier to form coexisting liquid-ordered and liquid-disordered domains. The physical/chemical alterations that result from the different treatment methods will be discussed.
Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.neurodegeneration | protein aggregation | protein misfolding | ALS | structural modeling P rotein misfolding and aggregation are linked to cell death and disease progression in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). In these diseases and others, the formation of amyloid plaques, often observed post mortem, has long been thought to play a role in neurodegeneration, but toxicity has never been confirmed (1-3). Recent research has shown that small, soluble oligomers, rather than insoluble amyloids, are likely to be the cytotoxic species causing neurodegeneration (4-14). These small, soluble oligomers undergo aberrant interactions with cell machinery and activate cell death pathways, but their exact stoichiometry is not known and their properties have yet to be characterized. Recently, metastable soluble Cu,Zn superoxide dismutase (SOD1) oligomers have been identified that contain an epitope associated with disease-linked species of SOD1, mutants of which are implicated in a subset of ALS (15-18). Size exclusion chromatography (SEC) of these oligomers revealed a size range of two to four monomers, consistent with previous findings of potentially cytotoxic SOD1 oligomers (19)(20)(21).Knowledge of the structures of these species would not only allow for definitive testing of their toxicity but could potentially lead to an understanding of disease mechanism and therapeutic strategies against diseases for which no ...
Discrete molecular dynamics (DMD) has emerged as a simplification of traditional molecular dynamics (MD). DMD employs discrete step function potentials in place of the continuous potential used in traditional MD. As a result, the simulation engine solves the ballistic equations of motion for only those particles participating in a collision, instead of solving Newton's equations of motion for every particle in the system. Because fewer calculations are performed per time step, the DMD technique allows for longer time and length scales to become accessible in the simulation of large biomolecules. The use of coarse‐grained models extends the computational advantage of this method. Although some accuracy is sacrificed to speed, because of the usefulness of DMD to the simulation of many particles at longer timescales, the technique has seen application to diverse molecular systems. © 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 80–92 DOI: 10.1002/wcms.4 This article is categorized under: Structure and Mechanism > Molecular Structures Structure and Mechanism > Computational Biochemistry and Biophysics Molecular and Statistical Mechanics > Molecular Dynamics and Monte-Carlo Methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.