A distinctive feature of game‐based learning environments is their capacity to create learning experiences that are both effective and engaging. Recent advances in sensor‐based technologies such as facial expression analysis and gaze tracking have introduced the opportunity to leverage multimodal data streams for learning analytics. Learning analytics informed by multimodal data captured during students’ interactions with game‐based learning environments hold significant promise for developing a deeper understanding of game‐based learning, designing game‐based learning environments to detect maladaptive behaviors and informing adaptive scaffolding to support individualized learning. This paper introduces a multimodal learning analytics approach that incorporates student gameplay, eye tracking and facial expression data to predict student posttest performance and interest after interacting with a game‐based learning environment, Crystal Island. We investigated the degree to which separate and combined modalities (ie, gameplay, facial expressions of emotions and eye gaze) captured from students (n = 65) were predictive of student posttest performance and interest after interacting with Crystal Island. Results indicate that when predicting student posttest performance and interest, models utilizing multimodal data either perform equally well or outperform models utilizing unimodal data. We discuss the synergistic effects of combining modalities for predicting both student interest and posttest performance. The findings suggest that multimodal learning analytics can accurately predict students’ posttest performance and interest during game‐based learning and hold significant potential for guiding real‐time adaptive scaffolding.
The present study examined mnemonic discrimination in 5- and 6-yr-old children, 8- and 9-yr-old children, 11- and 12-yr-old children, and young adults. Participants incidentally encoded pictorial stimuli and subsequently judged whether targets (i.e., repeated stimuli), lures (i.e., mnemonically related stimuli), and foils (i.e., novel stimuli) were old, similar, or new. Compared to older age groups, younger children were more likely to (1) incorrectly identify lures as "old" (rather than "similar") and (2) fail to recognize lures altogether, especially when lures were more mnemonically distinct from targets. These results suggest age-related improvements in pattern separation and pattern completion during childhood.
Self-regulated learning (SRL) is critical for learning across tasks, domains, and contexts. Despite its importance, research shows that not all learners are equally skilled at accurately and dynamically monitoring and regulating their self-regulatory processes. Therefore, learning technologies, such as intelligent tutoring systems (ITSs), have been designed to measure and foster SRL. This paper presents an overview of over 10 years of research on SRL with MetaTutor, a hypermedia-based ITS designed to scaffold college students’ SRL while they learn about the human circulatory system. MetaTutor’s architecture and instructional features are designed based on models of SRL, empirical evidence on human and computerized tutoring principles of multimedia learning, Artificial Intelligence (AI) in educational systems for metacognition and SRL, and research on SRL from our team and that of other researchers. We present MetaTutor followed by a synthesis of key research findings on the effectiveness of various versions of the system (e.g., adaptive scaffolding vs. no scaffolding of self-regulatory behavior) on learning outcomes. First, we focus on findings from self-reports, learning outcomes, and multimodal data (e.g., log files, eye tracking, facial expressions of emotion, screen recordings) and their contributions to our understanding of SRL with an ITS. Second, we elaborate on the role of embedded pedagogical agents (PAs) as external regulators designed to scaffold learners’ cognitive and metacognitive SRL strategy use. Third, we highlight and elaborate on the contributions of multimodal data in measuring and understanding the role of cognitive, affective, metacognitive, and motivational (CAMM) processes. Additionally, we unpack some of the challenges these data pose for designing real-time instructional interventions that scaffold SRL. Fourth, we present existing theoretical, methodological, and analytical challenges and briefly discuss lessons learned and open challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.