We study the Newton stratification on SL 3 (F), where F is a Laurent power series field. We provide a formula for the codimensions of the Newton strata inside each component of the affine Bruhat decomposition on SL 3 (F). These calculations are related to the study of certain affine Deligne-Lusztig varieties. In particular, we describe a method for determining which of these varieties is non-empty in the case of SL 3 (F).
Affine Deligne-Lusztig varieties can be thought of as affine analogs of classical Deligne-Lusztig varieties, or Frobenius-twisted analogs of Schubert varieties. We provide a method for proving a non-emptiness statement for affine Deligne-Lusztig varieties inside the affine flag variety associated to affine Weyl group elements satisfying a certain length additivity hypothesis. In particular, we prove that non-emptiness holds whenever it is conjectured to do so for alcoves in the shrunken dominant Weyl chamber, providing a partial converse to the emptiness results of Görtz, Haines, Kottwitz, and Reuman. Our technique involves the work of Geck and Pfeiffer on cuspidal conjugacy classes, in addition to an analysis of the combinatorics of certain fully commutative elements in the finite Weyl group.
International audience A driving question in (quantum) cohomology of flag varieties is to find non-recursive, positive combinatorial formulas for expressing the quantum product in a particularly nice basis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provide a way to compute quantum products of Schubert classes in the Grassmannian of $k$-planes in complex $n$-space by doing classical multiplication and then applying a combinatorial rimhook rule which yields the quantum parameter. In this paper, we provide a generalization of this rim hook rule to the setting in which there is also an action of the complex torus. Combining this result with Knutson and Tao's puzzle rule provides an effective algorithm for computing the equivariant quantum Littlewood-Richardson coefficients. Interestingly, this rule requires a specialization of torus weights that is tantalizingly similar to maps in affine Schubert calculus. Une question importante dans la cohomologie quantique des variétés de drapeaux est de trouver des formules positives non récursives pour exprimer le produit quantique dans une base particulièrement bonne, appelée la base de Schubert. Bertram, Ciocan-Fontanine et Fulton donnent une façon de calculer les produits quantiques de classes de Schubert dans la Grassmannienne de $k$-plans dans l’espace complexe de dimension $n$ en faisant la multiplication classique et appliquant une règle combinatoire “rimhook” qui donne le paramètre quantique. Dans cet article, nous donnons une généralisation de ce règle rimhook au contexte où il y a aussi une action du tore complexe. Combiné avec la règle “puzzle” de Knutson et Tao, cela donne une algorithme effective pour calculer les coefficients équivariants de Littlewood-Richard. Il est intéressant d'observer que cette règle demande une spécialisation des poids du tore qui est similaire d’une manière tentante aux applications dans le calcul de Schubert affiné.
Abstract. Affine Weyl groups and their parabolic quotients are used extensively as indexing sets for objects in combinatorics, representation theory, algebraic geometry, and number theory. Moreover, in the classical Lie types we can conveniently realize the elements of these quotients via intuitive geometric and combinatorial models such as abaci, alcoves, coroot lattice points, core partitions, and bounded partitions. In [1] Berg, Jones, and Vazirani described a bijection between n-cores with first part equal to k and (n − 1)-cores with first part less than or equal to k, and they interpret this bijection in terms of these other combinatorial models for the quotient of the affine symmetric group by the finite symmetric group. In this paper we discuss how to generalize the bijection of Berg-Jones-Vazirani to parabolic quotients of affine Weyl groups in type C. We develop techniques using the associated affine hyperplane arrangement to interpret this bijection geometrically as a projection of alcoves onto the hyperplane containing their coroot lattice points. We are thereby able to analyze this bijective projection in the language of various additional combinatorial models developed by Hanusa and Jones in [10], such as abaci, core partitions, and canonical reduced expressions in the Coxeter group.
International audience This paper discusses a surprising relationship between the quantum cohomology of the variety of complete flags and the partially ordered set of Newton polygons associated to an element in the affine Weyl group. One primary key to establishing this connection is the fact that paths in the quantum Bruhat graph, which is a weighted directed graph with vertices indexed by elements in the finite Weyl group, encode saturated chains in the strong Bruhat order on the affine Weyl group. This correspondence is also fundamental in the work of Lam and Shimozono establishing Peterson's isomorphism between the quantum cohomology of the finite flag variety and the homology of the affine Grassmannian. In addition, using some geometry associated to the poset of Newton polygons, one obtains independent proofs for several combinatorial statements about paths in the quantum Bruhat graph and its symmetries, which were originally proved by Postnikov using the tilted Bruhat order. An important geometric application of this work is an inequality which provides a necessary condition for non-emptiness of certain affine Deligne-Lusztig varieties in the affine flag variety. Cet article étudie une relation surprenante entre la cohomologie quantique de la variété de drapeaux complets et l'ensemble partiellement ordonné de polygones de Newton associé à un élément du groupe de Weyl affine. L’élément clé pour établir cette connexion est le fait que les chemins dans le graphe de Bruhat quantique, qui est un graphe orienté pondéré dont les sommets sont indexés par des éléments du groupe de Weyl fini, encodent des chaînes saturées dans l'ordre de Bruhat fort sur le groupe de Weyl affine. Cette correspondance est aussi fondamentale dans les travaux de Lam et Shimonozo qui établissent l'isomorphisme de Peterson entre la cohomologie quantique de la variété de drapeaux finie et l'homologie de la Grassmannienne affine. De plus, en utilisant la géométrie associée à l'ensemble partiellement ordonné des polygones de Newton, on obtient des preuves indépendantes pour plusieurs assertions combinatoires sur les chemins dans le graphe de Bruhat quantiques et les symétries de ce graphe, qui ont été originellement démontrées par Postnikov en utilisant l'ordre de Bruhat incliné. Une application géométrique importante de ce travail est une inégalité qui donne une condition nécessaire pour que certaines variétés de Deligne-Lusztig affines dans la variété de drapeaux affine soient non-vides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.