The J-function in Gromov-Witten theory is a generating function for one-point genus zero Gromov-Witten invariants with descendants. Here we give formulas for the quantum K-theoretic J-functions of type A flag manifolds and conjectural formulas for other types. Some K-theoretic tools for computation are also provided. As an application, we prove the quantum K-theoretic J-function version of the abelian-nonabelian correspondence for Grassmannians and products of projective space.
A driving question in (quantum) cohomology of flag varieties is to find non-recursive, positive combinatorial formulas for expressing the product of two classes in a particularly nice basis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provided a way to compute quantum products of Schubert classes in the Grassmannian of k-planes in complex n-space by doing classical multiplication and then applying a combinatorial rim hook rule which yields the quantum parameter. In this paper, we provide a generalization of this rim hook rule to the setting in which there is also an action of the complex torus. Combining this result with Knutson and Tao's puzzle rule then gives an effective algorithm for computing all equivariant quantum Littlewood-Richardson coefficients. Interestingly, this rule requires a specialization of torus weights modulo n, suggesting a direct connection to the Peterson isomorphism relating quantum and affine Schubert calculus.
International audience A driving question in (quantum) cohomology of flag varieties is to find non-recursive, positive combinatorial formulas for expressing the quantum product in a particularly nice basis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provide a way to compute quantum products of Schubert classes in the Grassmannian of $k$-planes in complex $n$-space by doing classical multiplication and then applying a combinatorial rimhook rule which yields the quantum parameter. In this paper, we provide a generalization of this rim hook rule to the setting in which there is also an action of the complex torus. Combining this result with Knutson and Tao's puzzle rule provides an effective algorithm for computing the equivariant quantum Littlewood-Richardson coefficients. Interestingly, this rule requires a specialization of torus weights that is tantalizingly similar to maps in affine Schubert calculus. Une question importante dans la cohomologie quantique des variétés de drapeaux est de trouver des formules positives non récursives pour exprimer le produit quantique dans une base particulièrement bonne, appelée la base de Schubert. Bertram, Ciocan-Fontanine et Fulton donnent une façon de calculer les produits quantiques de classes de Schubert dans la Grassmannienne de $k$-plans dans l’espace complexe de dimension $n$ en faisant la multiplication classique et appliquant une règle combinatoire “rimhook” qui donne le paramètre quantique. Dans cet article, nous donnons une généralisation de ce règle rimhook au contexte où il y a aussi une action du tore complexe. Combiné avec la règle “puzzle” de Knutson et Tao, cela donne une algorithme effective pour calculer les coefficients équivariants de Littlewood-Richard. Il est intéressant d'observer que cette règle demande une spécialisation des poids du tore qui est similaire d’une manière tentante aux applications dans le calcul de Schubert affiné.
The abelian-nonabelian correspondence outlined in (Duke Math J 126:101-136, 2005) gives a broad conjectural relationship between (twisted) Gromov-Witten invariants of related GIT quotients. This paper proves a case of the correspondence explicitly relating genus zero m-pointed Gromov-Witten invariants of Grassmannians Gr(2, n) and products of projective space P n−1 × P n−1 . Computation of the twisted Gromov-Witten invariants of P n−1 × P n−1 via localization is used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.