Let G be a reductive group over the field F = k((t)), where k is an algebraic closure of a finite field, and let W be the (extended) affine Weyl group of G. The associated affine Deligne-Lusztig varieties Xx(b), which are indexed by elements b ∈ G(F ) and x ∈ W , were introduced by Rapoport [Rap00]. Basic questions about the varieties Xx(b) which have remained largely open include when they are nonempty, and if nonempty, their dimension. We use techniques inspired by geometric group theory and combinatorial representation theory to address these questions in the case that b is a pure translation, and so prove much of a sharpened version of Conjecture 9.5.1 of Görtz, Haines, Kottwitz, and Reuman [GHKR10]. Our approach is constructive and type-free, sheds new light on the reasons for existing results in the case that b is basic, and reveals new patterns. Since we work only in the standard apartment of the building for G(F ), our results also hold in the p-adic context, where we formulate a definition of the dimension of a p-adic Deligne-Lusztig set. We present two immediate applications of our main results, to class polynomials of affine Hecke algebras and to affine reflection length.
We discuss a surprising relationship between the partially ordered set of Newton points associated to an affine Schubert cell and the quantum cohomology of the complex flag variety. The main theorem provides a combinatorial formula for the unique maximum element in this poset in terms of paths in the quantum Bruhat graph, whose vertices are indexed by elements in the finite Weyl group. Key to establishing this connection is the fact that paths in the quantum Bruhat graph encode saturated chains in the strong Bruhat order on the affine Weyl group. This correspondence is also fundamental in the work of Lam and Shimozono establishing Peterson's isomorphism between the quantum cohomology of the finite flag variety and the homology of the affine Grassmannian. One important geometric application of the present work is an inequality which provides a necessary condition for non-emptiness of certain affine Deligne-Lusztig varieties in the affine flag variety.
We consider the Newton stratification on Iwahori-double cosets in the loop group of a reductive group. We describe a group-theoretic condition on the generic Newton point, called cordiality, under which the Newton poset (that is, the index set for non-empty Newton strata) is saturated and Grothendieck’s conjecture on closures of the Newton strata holds. Finally, we give several large classes of Iwahori-double cosets for which this condition is satisfied by studying certain paths in the associated quantum Bruhat graph.
This paper provides a unified combinatorial framework to study orbits in certain affine flag varieties via the associated Bruhat–Tits buildings. We first formulate, for arbitrary affine buildings, the notion of a chimney retraction. This simultaneously generalizes the two well-known notions of retractions in affine buildings: retractions from chambers at infinity and retractions from alcoves. We then present a recursive formula for computing the images of certain minimal galleries in the building under chimney retractions, using purely combinatorial tools associated to the underlying affine Weyl group. Finally, for Bruhat–Tits buildings in the function field case, we relate these retractions and their effect on minimal galleries to double coset intersections in the corresponding affine flag variety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.