Overall, the metabolic profile of human milk is dynamic throughout the first month of lactation, with more variability in preterm than in term milk and subtle differences in some metabolite concentrations. This trial was registered at clinicaltrials.gov as NCT01841268.
Huanglongbing (HLB), also known as Citrus Greening Disease, is caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas) and is a serious threat to the citrus industry. To understand the effect of CLas infection on the citrus metabolome, juice from healthy (n = 18), HLB-asymptomatic (n = 18), and HLB-symptomatic Hamlin (n = 18), as well as from healthy (n = 18) and HLB-symptomatic (n = 18) Valencia sweet oranges (from southern and eastern Florida) were evaluated using (1)H NMR-based metabolomics. Differences in the concentration of several metabolites including phenylalanine, histidine, limonin, and synephrine between control or asymptomatic fruit and symptomatic fruit were observed regardless of the citrus variety or location. There were no clear differences between the metabolite profiles of Hamlin fruits classified by PCR as asymptomatic and control, suggesting that some of the control fruit may have been infected. Taken together, these data indicate that infection due to CLas presents a strong metabolic response that is observed across different cultivars and regions, suggesting the potential for generation of metabolite-based biomarkers of CLas infection.
“Candidatus Liberibacter asiaticus” (CLas) is the bacterium associated with the citrus disease Huanglongbing (HLB). Current CLas detection methods are unreliable during presymptomatic infection, and understanding CLas pathogenicity to help develop new detection techniques is challenging because CLas has yet to be isolated in pure culture. To understand how CLas affects citrus metabolism and whether infected plants produce systemic signals that can be used to develop improved detection techniques, leaves from Washington Navel orange (Citrus sinensis (L.) Osbeck) plants were graft-inoculated with CLas and longitudinally studied using transcriptomics (RNA sequencing), proteomics (liquid chromatography–tandem mass spectrometry), and metabolomics (proton nuclear magnetic resonance). Photosynthesis gene expression and protein levels were lower in infected plants compared to controls during late infection, and lower levels of photosynthesis proteins were identified as early as 8 weeks post-grafting. These changes coordinated with higher sugar concentrations, which have been shown to accumulate during HLB. Cell wall modification and degradation gene expression and proteins were higher in infected plants during late infection. Changes in gene expression and proteins related to plant defense were observed in infected plants as early as 8 weeks post-grafting. These results reveal coordinated changes in greenhouse navel leaves during CLas infection at the transcript, protein, and metabolite levels, which can inform of biomarkers of early infection.
Huanglongbing (HLB) is a severe, incurable citrus disease caused by the bacterium ‘Candidatus Liberibacter asiaticus’ (CLas). Although citrus leaves serve as the site of initial infection, CLas is known to migrate to and colonize the root system; however, little is known about the impact of CLas infection on root metabolism and resident microbial communities. Scions of ‘Lisbon’ lemon and ‘Washington Navel’ orange grafted onto ‘Carrizo’ rootstock were grafted with either CLas-infected citrus budwood or uninfected budwood. Roots were obtained from trees 46 weeks after grafting and analyzed via 1H nuclear magnetic resonance spectroscopy to identify water-soluble root metabolites and high-throughput sequencing of 16S rRNA and ITS gene amplicons to determine the relative abundance of bacterial and fungal taxa in the root rhizosphere and endosphere. In both citrus varieties, 27 metabolites were identified, of which several were significantly different between CLas(+) and control plants. CLas infection also appeared to alter the microbial community structure near and inside the roots of citrus plants. Nonmetric multidimensional scaling (NMDS) and a principal coordinate analysis (PCoA) revealed distinct metabolite and microbial profiles, demonstrating that CLas impacts the root metabolome and microbiome in a manner that is variety-specific.
Lactase persistence (LP) is a trait in which lactose can be digested throughout adulthood, while lactase non-persistence (LNP) can cause lactose intolerance and influence dairy consumption. One single nucleotide polymorphism (SNP ID: rs4988235) is often used as a predictor for dairy intake, since it is responsible for LP in people in European descent, and can occur in other ethnic groups. The objective of this study was to determine whether rs4988235 genotypes and ethnicity influence reported dairy consumption in the United States (U.S.). A food frequency questionnaire (FFQ) and multiple Automated Self-Administered 24-h recalls (ASA24®) were used to measure habitual and recent intake, respectively, of total dairy, cheese, cow’s milk, plant-based alternative milk, and yogurt in a multi-ethnic U.S. cohort genotyped for rs4988235. Within Caucasian subjects, LP individuals reported consuming more recent total dairy and habitual total cow’s milk intake. For subjects of all ethnicities, LP individuals consumed more cheese (FFQ p = 0.043, ASA24 p = 0.012) and recent total dairy (ASA24 p = 0.005). For both dietary assessments, Caucasians consumed more cheese than all non-Caucasians (FFQ p = 0.036, ASA24 p = 0.002) independent of genotype, as well as more recent intake of yogurt (ASA24 p = 0.042). LP subjects consumed more total cow’s milk than LNP, but only when accounting for whether subjects were Caucasian or not (FFQ p = 0.015). Fluid milk and alternative plant-based milk consumption were not associated with genotypes or ethnicity. Our results show that both LP genotype and ethnicity influence the intake of some dairy products in a multi-ethnic U.S. cohort, but the ability of rs4988235 genotypes to predict intake may depend on ethnic background, the specific dairy product, and whether intake is reported on a habitual or recent basis. Therefore, ethnicity and the dietary assessment method should also be considered when determining the suitability of rs4988235 as a proxy for dairy intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.