Biodiversity conservation is contingent upon managing human behaviour and, at times, changing behaviour. This is particularly relevant to the illegal trade in wildlife and wildlife products, both flora and fauna. Driven by dynamics of consumer demand and illicit supply, mitigation of illegal trade requires a fuller appreciation of human behaviour and methods to change it. In various sectors, social influence, behavioural insights, social marketing and human-centred approaches trend towards mainstream practice and policy application. However, in the context of conservation and wildlife trafficking, these approaches and their usefulness are not well-articulated nor application widespread. Here, we provide a practical overview of relevant behaviour change methods and frameworks. We discuss their usefulness and potential application to mitigating the illegal wildlife trade, in general and consumer demand, in particular.
Illegal wildlife-pet trade can threaten wildlife populations directly from overharvest, but also indirectly as a pathway for introduction of infectious diseases. This study evaluated consequences of a hypothetical introduction of Newcastle disease (ND) into a wild population of Peru’s most trafficked psittacine, the white-winged parakeet (Brotogeris versicolurus), through release of infected confiscated individuals. We developed two mathematical models that describe ND transmission and the influence of illegal harvest in a homogeneous (model 1) and age-structured population of parakeets (model 2). Infection transmission dynamics and harvest were consistent for all individuals in model 1, which rendered it mathematically more tractable compared to the more complex, age-structured model 2 that separated the host population into juveniles and adults. We evaluated the interaction of ND transmission and harvest through changes in the basic reproduction number (R0) and short-term host population dynamics. Our findings demonstrated that ND introduction would likely provoke considerable disease-related mortality, up to 24% population decline in two years, but high harvest rates would dampen the magnitude of the outbreak. Model 2 produced moderate differences in disease dynamics compared to model 1 (R0 = 3.63 and 2.66, respectively), but highlighted the importance of adult disease dynamics in diminishing the epidemic potential. Therefore, we suggest that future studies should use a more realistic, age-structured model. Finally, for the presumptive risk that illegal trade of white-winged parakeets could introduce ND into wild populations, our results suggest that while high harvest rates may have a protective effect on the population by reducing virus transmission, the combined effects of high harvest and disease-induced mortality may threaten population survival. These results capture the complexity and consequences of the interaction between ND transmission and harvest in a wild parrot population and highlight the importance of preventing illegal trade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.