Forecasting future activity and performing hazard assessments during the reactivation of large andesitic volcanoes remain a great challenge for the volcanological community. On August 14, 2015 Cotopaxi volcano erupted for the first time in 73 years after approximately four months of precursory activity, which included an increase in seismicity, gas emissions, and minor ground deformation. Here we discuss the use of near real-time petrological monitoring of ash samples as a complementary aid to geophysical monitoring, in order to infer eruption dynamics and evaluate possible future eruptive activity at Cotopaxi. Twenty ash samples were collected between August 14 and November 23, 2015 from a monitoring site on the west flank of the volcano. These samples
The ability of volatiles to escape rising magma regulates the explosivity of a volcanic system. During silicic lava dome eruptions, strain localization at the conduit margin occurs during magma ascent, creating a damage halo with implications for gas escape. Here we report the first systematic study of permeability network anisotropy across the marginal shear zone of the A.D. 2004-2008 lava dome at Mount St. Helens (Washington State, USA). The results show increasingly large permeability anisotropy of as much as four orders of magnitude (over ~4 m) moving from the interior of the spine through the damage halo. We find the permeability to be essentially isotropic in the spine interior but highly anisotropic in the damage zone and fault core. Our examination of the dome rocks reveals that the permeability anisotropy depends strongly on the presence of vertically oriented shear layers. Here we show that the rate of escape of volatiles will be several orders of magnitude higher vertically through a conduit margin shear zone than horizontally into the conduit wall.
Accelerating rates of quasiperiodic “drumbeat” long‐period earthquakes (LPs) are commonly reported before eruptions at andesite and dacite volcanoes, and promise insights into the nature of fundamental preeruptive processes and improved eruption forecasts. Here we apply a new Bayesian Markov chain Monte Carlo gamma point process methodology to investigate an exceptionally well‐developed sequence of drumbeat LPs preceding a recent large vulcanian explosion at Tungurahua volcano, Ecuador. For more than 24 hr, LP rates increased according to the inverse power law trend predicted by material failure theory, and with a retrospectively forecast failure time that agrees with the eruption onset within error. LPs resulted from repeated activation of a single characteristic source driven by accelerating loading, rather than a distributed failure process, showing that similar precursory trends can emerge from quite different underlying physics. Nevertheless, such sequences have clear potential for improving forecasts of eruptions at Tungurahua and analogous volcanoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.