Primary care physicians may be unprepared to diagnose and treat rare, yet potentially fatal, illnesses such as acute radiation syndrome (ARS). ARS, also known as radiation sickness, is caused by exposure to a high dose of penetrating, ionizing radiation over a short period of time. The time to onset of ARS is dependent on the dose received, but even at the lowest doses capable of causing illness, this will occur within a matter of hours to days. This article describes the clinical manifestations of ARS, provides guidelines for assessing its severity, and makes recommendations for managing ARS victims.
This article summarizes major points from a newly released guide published online by the Office of the Assistant Secretary for Preparedness and Response (ASPR). The article reviews basic principles about radiation and its measurement, short-term and long-term effects of radiation, and medical countermeasures as well as essential information about how to prepare for and respond to a nuclear detonation. A link is provided to the manual itself, which in turn is heavily referenced for readers who wish to have more detail.
When assessing the feasibility of remediation following the detonation of a radiological dispersion device or improvised nuclear device in a large city, several issues should be considered including the levels and characteristics of the radioactive contamination, the availability of resources required for decontamination, and the planned future use of the city's structures and buildings. Currently, little is known about radionuclide penetration into construction materials in an urban environment. Knowledge in this area would be useful when considering costs of a thorough decontamination of buildings, artificial structures, and roads in an affected urban environment. Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident in April 1986, may provide some answers. The main objective of this study was to assess the depth of Cs penetration into reinforced concrete structures in a highly contaminated urban environment under natural weather conditions. Thirteen reinforced concrete core samples were obtained from external surfaces of a contaminated building in Pripyat. The concrete cores were drilled to obtain sample layers of 0-5, 5-10, 10-15, 15-20, 20-30, 30-40, and 40-50 Cs.
ABSTRACTFetal sensitivity to radiation-induced health effects is related to gestational age, and it is highly dependent on fetal dose. Typical fetal doses from diagnostic radiology are usually below any level of concern. Although rare, significant fetal radiation doses can result from interventional medical exposures (fluoroscopically guided techniques), radiation therapy, or radiological or nuclear incidents, including terrorism. The potential health effects from these large radiation doses (possibly large enough to result in acute radiation syndrome in the expectant mother) include growth retardation, malformations, impaired brain function, and neoplasia. If exposure occurs during blastogenesis (and the embryo survives), there is a low risk for congenital abnormalities. (In all stages of gestation, radiation-induced noncancer health effects have not been reported for fetal doses below about 0.05 Gy [5 rad].) The additional risk for childhood cancer from prenatal radiation exposure is about 12% per Gy (0.12%/rad) above the background incidence.(Disaster Med Public Health Preparedness. 2011;5:62-68)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.