Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ~50 million dengue infections and ~500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future.Dengue is the most important arthropod-borne viral infection of humans. Worldwide, an estimated 2.5 billion people are at risk of infection, approximately 975 million of whom live in urban areas in tropical and sub-tropical countries in Southeast Asia, the Pacific and the Americas 1 . Transmission also occurs in Africa and the Eastern Mediterranean, and rural Europe PMC Funders GroupAuthor Manuscript Nat Rev Microbiol. Author manuscript; available in PMC 2015 February 19. Published in final edited form as:Nat Rev Microbiol. 2010 December ; 8(12 0): S7-16. doi:10.1038/nrmicro2460. Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts communities are increasingly being affected. It is estimated that more than 50 million infections occur each year, including 500,000 hospitalizations for dengue haemorrhagic fever, mainly among children, with the case fatality rate exceeding 5% in some areas [1][2][3][4] . The geographical areas in which dengue transmission occurs have expanded in recent years (FIG. 1), and all four dengue virus serotypes (DENV-1-4) are now circulating in Asia, Africa and the Americas, a dramatically different scenario from that which prevailed 20 or 30 years ago (FIG. 2). The molecular epidemiology of these serotypes has been studied in an attempt to understand their evolutionary relationships 11 .This Review will provide an update on our understanding of the pathogenesis of this successful pathogen, how we diagnose and control infection and the progress that has been made in vaccine development. Dengue virus pathogenesisDengue viruses belong to the genus flavivirus within the Flaviviridae family. DENV-1-4 evolved in non-human primates from a common ancestor and each entered the urban cycle independently an estimated 500-1,000 years ago 12 . The virion comprises a spherical particle, 40-50 nm in diameter, with a lipopolysaccharide envelope. The positive singlestrand RNA genome (FIG. 3), which is approximately 11 kb in length, has a single open reading frame that encodes three structural proteins -the capsid (C), membrane (M) and envelope (E) glycoproteins -and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 [18][19][20] . ADE occurs when mononuclear phagocytes are infected through their Fc receptors by immune complexes that form between DE...
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Abstract. Chikungunya spread throughout the Dominican Republic (DR) after the first identified laboratoryconfirmed cases were reported in April 2014. In June 2014, a U.S.-based service organization operating in the DR reported chikungunya-like illnesses among several staff. We assessed the incidence of chikungunya virus (CHIKV) and dengue virus (DENV) infection and illnesses and evaluated adherence to mosquito avoidance measures among volunteers/staff deployed in the DR who returned to the United States during July-August 2014. Investigation participants completed a questionnaire that collected information on demographics, medical history, self-reported illnesses, and mosquito exposures and avoidance behaviors and provided serum for CHIKV and DENV diagnostic testing by reverse transcription polymerase chain reaction and IgM enzyme-linked immunosorbent assay. Of 102 participants, 42 (41%) had evidence of recent CHIKV infection and two (2%) had evidence of recent DENV infection. Of the 41 participants with evidence of recent CHIKV infection only, 39 (95%) reported fever, 37 (90%) reported rash, and 37 (90%) reported joint pain during their assignment. All attended the organization's health trainings, and 89 (87%) sought a pretravel health consultation. Most (∼95%) used insect repellent; however, only 30% applied it multiple times daily and < 5% stayed in housing with window/door screens. In sum, CHIKV infections were common among these volunteers during the 2014 chikungunya epidemic in the DR. Despite high levels of preparation, reported adherence to mosquito avoidance measures were inconsistent. Clinicians should discuss chikungunya with travelers visiting areas with ongoing CHIKV outbreaks and should consider chikungunya when diagnosing febrile illnesses in travelers returning from affected areas.
Background: Kenya introduced the monovalent G1P [8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre-(January 2010-June 2014) and post-(July 2014-December 2018) RVA vaccine introduction. Methods: Stool samples were collected from children aged < 13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic Nairobi, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged < 5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and VP7 and VP4 genes sequenced to infer genotypes. Results: We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the prevaccine introduction period, the most frequent RVA genotypes were G1P [8] (45.8%), G8P [4] (15.8%), G9P [8] (13.2%), G2P [4] (7.0%) and G3P [6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P [8] (52.1%), G2P [4] (20.7%) and G3P [8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of vaccine heterotypic genotypes, such as the commonly DS-1-like G2P [4] (7.0 to 20.7%, P < .001) and G3P [8] (1.3 to 16.1%, P < .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P [4] (15.8 to 0.4%, P < .001) and G9P [8] (13.2 to 5.4%, P < .001) in the post-vaccine introduction period. Phylogenetic analysis of genotype G1P [8], revealed circulation of strains of lineages G1-I, G1-II and P [8]-1, P [8]-III and P [8]-IV. Considerable genetic diversity was observed between the pre and post-vaccine strains, evidenced by distinct clusters.
The North American West Nile virus (WNV), New York 1999 strain, appears to be highly neurotropic, and its neuroinvasiveness is an important aspect of human disease. The authors have developed an in vitro model to study WNV replication and protein processing in neurons. They compared WNV infection of the dorsal root ganglion (DRG) neurons (sensory neurons) and PC-12 cells (sympathetic neurons) to WNV infection of the mosquito cell line, C6/36, and Vero cells. WNV infection of both neuronal cell types and C6/36 cells was not cytopathic up to 30 days post infection, and continual viral shedding was observed during this period. However, WNV infection of Vero cells was lytic. Interestingly, WNV infection of neurons was not efficient, requiring a high multiplicity of infection of > or = 10. Indirect immunofluorescence assays using normal and confocal microscopy with flavivirus-reactive antibodies and WNV-infected neurons demonstrated viral antigen mostly associated with the plasma membrane and in the neurite processes. Treatment of WNV-infected C6/36, PC-12, or DRG cells with brefeldin A (BFA; a trans-Golgi inhibitor) or nocadazole (a beta-tubulin inhibitor) had little effect on viral maturation and secretion. Treatment of WNV-infected Vero cells with BFA resulted in a 1000-fold decrease in viral titer, but nocodazole had no effect. Our studies suggest that even though PC-12 and DRG neurons are mammalian cells, viral protein processing and maturation in these cells more closely resembles replication in C6/36 insect cells than in mammalian Vero cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.